利用XCAVATOR和EXCAVATOR2从WGS、WES和TS数据中识别CNVs

Romina D'Aurizio, Roberto Semeraro, Alberto Magi
{"title":"利用XCAVATOR和EXCAVATOR2从WGS、WES和TS数据中识别CNVs","authors":"Romina D'Aurizio,&nbsp;Roberto Semeraro,&nbsp;Alberto Magi","doi":"10.1002/cphg.65","DOIUrl":null,"url":null,"abstract":"<p>Copy Number Variants (CNVs) are structural rearrangements contributing to phenotypic variation but also associated with many disease states. In recent years, the identification of CNVs from high-throughput sequencing experiments has become a common practice for both research and clinical purposes. Several computational methods have been developed so far. In this unit, we describe and give instructions on how to run two read count–based tools, XCAVATOR and EXCAVATOR2, which are tailored for the detection of both germline and somatic CNVs from different sequencing experiments (whole-genome, whole-exome, and targeted) in various disease contexts and population genetic studies. © 2018 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":40007,"journal":{"name":"Current Protocols in Human Genetics","volume":"98 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cphg.65","citationCount":"6","resultStr":"{\"title\":\"Using XCAVATOR and EXCAVATOR2 to Identify CNVs from WGS, WES, and TS Data\",\"authors\":\"Romina D'Aurizio,&nbsp;Roberto Semeraro,&nbsp;Alberto Magi\",\"doi\":\"10.1002/cphg.65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Copy Number Variants (CNVs) are structural rearrangements contributing to phenotypic variation but also associated with many disease states. In recent years, the identification of CNVs from high-throughput sequencing experiments has become a common practice for both research and clinical purposes. Several computational methods have been developed so far. In this unit, we describe and give instructions on how to run two read count–based tools, XCAVATOR and EXCAVATOR2, which are tailored for the detection of both germline and somatic CNVs from different sequencing experiments (whole-genome, whole-exome, and targeted) in various disease contexts and population genetic studies. © 2018 by John Wiley &amp; Sons, Inc.</p>\",\"PeriodicalId\":40007,\"journal\":{\"name\":\"Current Protocols in Human Genetics\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cphg.65\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Protocols in Human Genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cphg.65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Human Genetics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cphg.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

拷贝数变异是导致表型变异的结构重排,但也与许多疾病状态有关。近年来,从高通量测序实验中鉴定CNVs已成为研究和临床目的的普遍做法。到目前为止,已经开发了几种计算方法。在本单元中,我们描述并说明如何运行两个基于读取计数的工具,XCAVATOR和EXCAVATOR2,这是专门为在各种疾病背景和群体遗传研究中检测来自不同测序实验(全基因组,全外显子组和靶向)的种系和体细胞CNVs而定制的。©2018 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using XCAVATOR and EXCAVATOR2 to Identify CNVs from WGS, WES, and TS Data

Copy Number Variants (CNVs) are structural rearrangements contributing to phenotypic variation but also associated with many disease states. In recent years, the identification of CNVs from high-throughput sequencing experiments has become a common practice for both research and clinical purposes. Several computational methods have been developed so far. In this unit, we describe and give instructions on how to run two read count–based tools, XCAVATOR and EXCAVATOR2, which are tailored for the detection of both germline and somatic CNVs from different sequencing experiments (whole-genome, whole-exome, and targeted) in various disease contexts and population genetic studies. © 2018 by John Wiley & Sons, Inc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Protocols in Human Genetics
Current Protocols in Human Genetics Biochemistry, Genetics and Molecular Biology-Genetics
自引率
0.00%
发文量
0
期刊介绍: Current Protocols in Human Genetics is the resource for designing and running successful research projects in all branches of human genetics.
期刊最新文献
Issue Information Resolving Breakpoints of Chromosomal Rearrangements at the Nucleotide Level Using Sanger Sequencing Informed Consent for Genetic and Genomic Research A Guide to Using ClinTAD for Interpretation of DNA Copy Number Variants in the Context of Topologically Associated Domains The AD Knowledge Portal: A Repository for Multi-Omic Data on Alzheimer's Disease and Aging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1