设计和合成具有强效抗乳腺癌活性的 CDK4 抑制剂--新型双-吲哚和螺(三唑-吲哚)。

IF 1.9 4区 医学 Q3 CHEMISTRY, MEDICINAL Medicinal Chemistry Pub Date : 2024-01-01 DOI:10.2174/1573406419666230810124855
Thoraya A Farghaly, Rami A Pashameah, Abrar Bayazeed, Amerah M Al-Soliemy, Amani M R Alsaedi, Marwa F Harras
{"title":"设计和合成具有强效抗乳腺癌活性的 CDK4 抑制剂--新型双-吲哚和螺(三唑-吲哚)。","authors":"Thoraya A Farghaly, Rami A Pashameah, Abrar Bayazeed, Amerah M Al-Soliemy, Amani M R Alsaedi, Marwa F Harras","doi":"10.2174/1573406419666230810124855","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Since CDKs have been demonstrated to be overexpressed in a wide spectrum of human malignancies, their inhibition has been cited as an effective technique for anticancer drug development.</p><p><strong>Methods: </strong>In this context, new bis-oxindole/spiro-triazole-oxindole anti-breast cancer drugs with potential CDK4 inhibitory effects were produced in this work. The novel series of bis-oxindole/spirotriazole- oxindole were synthesized from the reaction of bis-oxindole with the aniline derivatives then followed by 1,3-dipolar cycloaddition of hydrazonoyl chloride.</p><p><strong>Results: </strong>The structure of these bis-oxindole/spiro-triazole-oxindole series was proven based on their spectral analyses. Most bis-oxindole and bis-spiro-triazole-oxindole compounds effectively inhibited the growth of MCF-7 (IC<sub>50</sub> = 2.81-17.61 μM) and MDA-MB-231 (IC<sub>50</sub> = 3.23-7.98 μM) breast cancer cell lines with low inhibitory activity against normal WI-38 cells. While the reference doxorubicin showed IC50 values of 7.43 μM against MCF-7 and 5.71 μM against the MDA-MB-231 cell line. Additionally, compounds 3b, 3c, 6b, and 6d revealed significant anti-CDK4 activity (IC<sub>50</sub> = 0.157- 0.618 μM) compared to palbociclib (IC<sub>50</sub> = 0.071 μM). Subsequent mechanistic investigations demonstrated that 3c was able to trigger tumor cell death through the induction of apoptosis. Moreover, it stimulated cancer cell cycle arrest in the G1 phase. Furthermore, western blotting disclosed that the 3c-induced cell cycle arrest may be mediated through p21 upregulation.</p><p><strong>Conclusion: </strong>According to all of the findings, bis-oxindole 3c shows promise as a cancer treatment targeting CDK4.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":" ","pages":"63-77"},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Synthesis of New <i>bis</i>-oxindole and Spiro(triazole-oxindole) as CDK4 Inhibitors with Potent Anti-breast Cancer Activity.\",\"authors\":\"Thoraya A Farghaly, Rami A Pashameah, Abrar Bayazeed, Amerah M Al-Soliemy, Amani M R Alsaedi, Marwa F Harras\",\"doi\":\"10.2174/1573406419666230810124855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Since CDKs have been demonstrated to be overexpressed in a wide spectrum of human malignancies, their inhibition has been cited as an effective technique for anticancer drug development.</p><p><strong>Methods: </strong>In this context, new bis-oxindole/spiro-triazole-oxindole anti-breast cancer drugs with potential CDK4 inhibitory effects were produced in this work. The novel series of bis-oxindole/spirotriazole- oxindole were synthesized from the reaction of bis-oxindole with the aniline derivatives then followed by 1,3-dipolar cycloaddition of hydrazonoyl chloride.</p><p><strong>Results: </strong>The structure of these bis-oxindole/spiro-triazole-oxindole series was proven based on their spectral analyses. Most bis-oxindole and bis-spiro-triazole-oxindole compounds effectively inhibited the growth of MCF-7 (IC<sub>50</sub> = 2.81-17.61 μM) and MDA-MB-231 (IC<sub>50</sub> = 3.23-7.98 μM) breast cancer cell lines with low inhibitory activity against normal WI-38 cells. While the reference doxorubicin showed IC50 values of 7.43 μM against MCF-7 and 5.71 μM against the MDA-MB-231 cell line. Additionally, compounds 3b, 3c, 6b, and 6d revealed significant anti-CDK4 activity (IC<sub>50</sub> = 0.157- 0.618 μM) compared to palbociclib (IC<sub>50</sub> = 0.071 μM). Subsequent mechanistic investigations demonstrated that 3c was able to trigger tumor cell death through the induction of apoptosis. Moreover, it stimulated cancer cell cycle arrest in the G1 phase. Furthermore, western blotting disclosed that the 3c-induced cell cycle arrest may be mediated through p21 upregulation.</p><p><strong>Conclusion: </strong>According to all of the findings, bis-oxindole 3c shows promise as a cancer treatment targeting CDK4.</p>\",\"PeriodicalId\":18382,\"journal\":{\"name\":\"Medicinal Chemistry\",\"volume\":\" \",\"pages\":\"63-77\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1573406419666230810124855\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1573406419666230810124855","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:由于 CDKs 已被证实在多种人类恶性肿瘤中过度表达,因此抑制 CDKs 被认为是抗癌药物开发的有效技术:方法:在此背景下,本研究制备了具有潜在 CDK4 抑制作用的双吲哚/螺三唑-吲哚抗乳腺癌新药。新的双吲哚/螺环三唑-吲哚系列是由双吲哚与苯胺衍生物反应,然后与肼酰氯进行 1,3- 二极环加成反应合成的:结果:这些双吲哚/螺三唑-吲哚系列的结构已根据其光谱分析得到证实。大多数双-氧化吲哚和双螺三唑-氧化吲哚化合物能有效抑制 MCF-7 (IC50 = 2.81-17.61 μM)和 MDA-MB-231 (IC50 = 3.23-7.98 μM)乳腺癌细胞系的生长,而对正常 WI-38 细胞的抑制活性较低。而参照物多柔比星对 MCF-7 和 MDA-MB-231 细胞株的 IC50 值分别为 7.43 μM 和 5.71 μM。此外,与帕博西尼(IC50 = 0.071 μM)相比,化合物 3b、3c、6b 和 6d 显示出显著的抗 CDK4 活性(IC50 = 0.157- 0.618 μM)。随后的机理研究表明,3c 能够通过诱导细胞凋亡引发肿瘤细胞死亡。此外,它还能刺激癌细胞周期停滞在 G1 期。此外,Western 印迹显示,3c 诱导的细胞周期停滞可能是通过 p21 上调介导的:结论:根据所有研究结果,双氧吲哚 3c 具有靶向 CDK4 治疗癌症的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Synthesis of New bis-oxindole and Spiro(triazole-oxindole) as CDK4 Inhibitors with Potent Anti-breast Cancer Activity.

Background: Since CDKs have been demonstrated to be overexpressed in a wide spectrum of human malignancies, their inhibition has been cited as an effective technique for anticancer drug development.

Methods: In this context, new bis-oxindole/spiro-triazole-oxindole anti-breast cancer drugs with potential CDK4 inhibitory effects were produced in this work. The novel series of bis-oxindole/spirotriazole- oxindole were synthesized from the reaction of bis-oxindole with the aniline derivatives then followed by 1,3-dipolar cycloaddition of hydrazonoyl chloride.

Results: The structure of these bis-oxindole/spiro-triazole-oxindole series was proven based on their spectral analyses. Most bis-oxindole and bis-spiro-triazole-oxindole compounds effectively inhibited the growth of MCF-7 (IC50 = 2.81-17.61 μM) and MDA-MB-231 (IC50 = 3.23-7.98 μM) breast cancer cell lines with low inhibitory activity against normal WI-38 cells. While the reference doxorubicin showed IC50 values of 7.43 μM against MCF-7 and 5.71 μM against the MDA-MB-231 cell line. Additionally, compounds 3b, 3c, 6b, and 6d revealed significant anti-CDK4 activity (IC50 = 0.157- 0.618 μM) compared to palbociclib (IC50 = 0.071 μM). Subsequent mechanistic investigations demonstrated that 3c was able to trigger tumor cell death through the induction of apoptosis. Moreover, it stimulated cancer cell cycle arrest in the G1 phase. Furthermore, western blotting disclosed that the 3c-induced cell cycle arrest may be mediated through p21 upregulation.

Conclusion: According to all of the findings, bis-oxindole 3c shows promise as a cancer treatment targeting CDK4.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medicinal Chemistry
Medicinal Chemistry 医学-医药化学
CiteScore
4.30
自引率
4.30%
发文量
109
审稿时长
12 months
期刊介绍: Aims & Scope Medicinal Chemistry a peer-reviewed journal, aims to cover all the latest outstanding developments in medicinal chemistry and rational drug design. The journal publishes original research, mini-review articles and guest edited thematic issues covering recent research and developments in the field. Articles are published rapidly by taking full advantage of Internet technology for both the submission and peer review of manuscripts. Medicinal Chemistry is an essential journal for all involved in drug design and discovery.
期刊最新文献
Exploring Pyridine-Based Schemes: A Comprehensive Review on their Synthesis and Therapeutic Applications. Integrating Machine Learning and Pharmacophore Features for Enhanced Prediction of H1 Receptor Blockers. Pyridine Derivatives: A Comprehensive Review of Their Potential as Anti-Diabetic Agents. A Comprehensive Review: Synthesis and Pharmacological Activities of 1,3,4-Oxadiazole Hybrid Scaffolds. Advances in Structural Types and Pharmacochemistry of CDK12 Inhibitors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1