药用蘑菇产品的下游加工。

4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Advances in biochemical engineering/biotechnology Pub Date : 2023-01-01 DOI:10.1007/10_2021_187
Haiyan Luo, Yingbo Li
{"title":"药用蘑菇产品的下游加工。","authors":"Haiyan Luo,&nbsp;Yingbo Li","doi":"10.1007/10_2021_187","DOIUrl":null,"url":null,"abstract":"<p><p>Medicinal mushrooms are higher fungi that consist of ascomycetes, basidiomycetes, and imperfect fungi. They have been long used as tonic and traditional medicine in East Asia, Europe, and Africa. Contemporary pharmacological researches have revealed that they possess a wide spectrum of bioactivity due to their production of a variety of bioactive compounds. Some of them have entered into the market; some are ready for industrial trials and further commercialization, while others are in various stages of development. According to the purpose of usage, a variety of medicinal mushroom-based products have been developed, which could be roughly divided into three general categories, i.e., nutraceuticals/functional foods, nutriceuticals/dietary supplements, and pharmaceuticals. Accordingly, the downstream processing of medicinal mushroom products varies greatly. Indeed, a major characteristic of medicinal mushroom is the wide variety of secondary metabolites, due to which a broad spectrum of separation techniques must be employed. In this chapter we will present an overview of the achievements in downstream processing technology for medicinal mushroom products. Examples of separation of products such as bioactive high-molecular-weight products like polysaccharides and low-molecular-weight products like triterpenoids are given. The application of some special separation strategy, e.g., chemical reaction-assisted separation for tackling some analogs with similar physicochemical properties from medicinal mushroom, is also described.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":"184 ","pages":"187-218"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Downstream Processing of Medicinal Mushroom Products.\",\"authors\":\"Haiyan Luo,&nbsp;Yingbo Li\",\"doi\":\"10.1007/10_2021_187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Medicinal mushrooms are higher fungi that consist of ascomycetes, basidiomycetes, and imperfect fungi. They have been long used as tonic and traditional medicine in East Asia, Europe, and Africa. Contemporary pharmacological researches have revealed that they possess a wide spectrum of bioactivity due to their production of a variety of bioactive compounds. Some of them have entered into the market; some are ready for industrial trials and further commercialization, while others are in various stages of development. According to the purpose of usage, a variety of medicinal mushroom-based products have been developed, which could be roughly divided into three general categories, i.e., nutraceuticals/functional foods, nutriceuticals/dietary supplements, and pharmaceuticals. Accordingly, the downstream processing of medicinal mushroom products varies greatly. Indeed, a major characteristic of medicinal mushroom is the wide variety of secondary metabolites, due to which a broad spectrum of separation techniques must be employed. In this chapter we will present an overview of the achievements in downstream processing technology for medicinal mushroom products. Examples of separation of products such as bioactive high-molecular-weight products like polysaccharides and low-molecular-weight products like triterpenoids are given. The application of some special separation strategy, e.g., chemical reaction-assisted separation for tackling some analogs with similar physicochemical properties from medicinal mushroom, is also described.</p>\",\"PeriodicalId\":7198,\"journal\":{\"name\":\"Advances in biochemical engineering/biotechnology\",\"volume\":\"184 \",\"pages\":\"187-218\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in biochemical engineering/biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/10_2021_187\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in biochemical engineering/biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/10_2021_187","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

药用蘑菇是由子囊菌、担子菌和不完全真菌组成的高等真菌。它们在东亚、欧洲和非洲长期被用作补品和传统药物。当代药理学研究表明,由于它们能产生多种生物活性化合物,因此具有广泛的生物活性。其中一些已经进入市场;一些已经准备好进行工业试验和进一步商业化,而另一些则处于不同的开发阶段。根据使用目的,已经开发出各种药用蘑菇产品,大致可分为三大类,即营养品/功能性食品、营养品/膳食补充剂和药物。因此,药用蘑菇产品的下游加工差异很大。事实上,药用蘑菇的一个主要特征是次级代谢产物种类繁多,因此必须采用广泛的分离技术。在本章中,我们将概述药用蘑菇产品下游加工技术的成就。给出了分离产物的实例,例如生物活性高分子量产物如多糖和低分子量产物如三萜。还介绍了一些特殊分离策略的应用,如化学反应辅助分离,以处理药用蘑菇中一些具有相似物理化学性质的类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Downstream Processing of Medicinal Mushroom Products.

Medicinal mushrooms are higher fungi that consist of ascomycetes, basidiomycetes, and imperfect fungi. They have been long used as tonic and traditional medicine in East Asia, Europe, and Africa. Contemporary pharmacological researches have revealed that they possess a wide spectrum of bioactivity due to their production of a variety of bioactive compounds. Some of them have entered into the market; some are ready for industrial trials and further commercialization, while others are in various stages of development. According to the purpose of usage, a variety of medicinal mushroom-based products have been developed, which could be roughly divided into three general categories, i.e., nutraceuticals/functional foods, nutriceuticals/dietary supplements, and pharmaceuticals. Accordingly, the downstream processing of medicinal mushroom products varies greatly. Indeed, a major characteristic of medicinal mushroom is the wide variety of secondary metabolites, due to which a broad spectrum of separation techniques must be employed. In this chapter we will present an overview of the achievements in downstream processing technology for medicinal mushroom products. Examples of separation of products such as bioactive high-molecular-weight products like polysaccharides and low-molecular-weight products like triterpenoids are given. The application of some special separation strategy, e.g., chemical reaction-assisted separation for tackling some analogs with similar physicochemical properties from medicinal mushroom, is also described.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in biochemical engineering/biotechnology
Advances in biochemical engineering/biotechnology 工程技术-生物工程与应用微生物
CiteScore
5.70
自引率
0.00%
发文量
29
期刊介绍: Advances in Biochemical Engineering/Biotechnology reviews actual trends in modern biotechnology. Its aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required for chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. They give the state-of-the-art of a topic in a comprehensive way thus being a valuable source for the next 3 - 5 years. It also discusses new discoveries and applications.
期刊最新文献
Investigation of Upgrading of Products from Finnoflag Bio-refinery Pilot in Tampere. Microbial Biorefinery Education for Professionals. Mixed Strain Fermentation and Metabonomics for Solving Issues of Bioproduction. Simultaneous CO2 Absorption from a Power Plant and Wastewater Treatment. Shewanella oneidensis: Biotechnological Application of Metal-Reducing Bacteria.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1