{"title":"人多能干细胞向内皮细胞的高效分化","authors":"Mingxia Gu","doi":"10.1002/cphg.64","DOIUrl":null,"url":null,"abstract":"<p>Endothelial cells (ECs) line the interior surface of blood and lymphatic vessels, and play a key role in a variety of physiological or pathological processes such as thrombosis, inflammation, or vascular wall remodeling. Human-induced pluripotent stem cell (iPSCs)-derived ECs provide a new opportunity for vascular regeneration and serve as a model to study the mechanism and to screen for novel therapies. We use developmental cues in a monolayer differentiation approach to efficiently generate mesoderm cells from iPSCs via small-molecule activation of WNT signaling in chemically defined medium for 4 days, and subsequent EC specification using vascular endothelial growth factor and fibroblast growth factor for another 4 days. After 8 days of differentiation, mature ECs are further purified using magnetic-activated cell sorting for the EC surface marker CD144. These ECs exhibit molecular and cellular characteristics consistent with native ECs, such as expression of specific surface markers, formation of tube-like structures and acetylated low-density lipoprotein uptake. © 2018 by John Wiley & Sons, Inc.</p>","PeriodicalId":40007,"journal":{"name":"Current Protocols in Human Genetics","volume":"98 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cphg.64","citationCount":"26","resultStr":"{\"title\":\"Efficient Differentiation of Human Pluripotent Stem Cells to Endothelial Cells\",\"authors\":\"Mingxia Gu\",\"doi\":\"10.1002/cphg.64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Endothelial cells (ECs) line the interior surface of blood and lymphatic vessels, and play a key role in a variety of physiological or pathological processes such as thrombosis, inflammation, or vascular wall remodeling. Human-induced pluripotent stem cell (iPSCs)-derived ECs provide a new opportunity for vascular regeneration and serve as a model to study the mechanism and to screen for novel therapies. We use developmental cues in a monolayer differentiation approach to efficiently generate mesoderm cells from iPSCs via small-molecule activation of WNT signaling in chemically defined medium for 4 days, and subsequent EC specification using vascular endothelial growth factor and fibroblast growth factor for another 4 days. After 8 days of differentiation, mature ECs are further purified using magnetic-activated cell sorting for the EC surface marker CD144. These ECs exhibit molecular and cellular characteristics consistent with native ECs, such as expression of specific surface markers, formation of tube-like structures and acetylated low-density lipoprotein uptake. © 2018 by John Wiley & Sons, Inc.</p>\",\"PeriodicalId\":40007,\"journal\":{\"name\":\"Current Protocols in Human Genetics\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cphg.64\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Protocols in Human Genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cphg.64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Human Genetics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cphg.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26