生物学上似是而非的独立成分分析的单层网络。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-12-01 DOI:10.1007/s00422-022-00943-8
David Lipshutz, Cengiz Pehlevan, Dmitri B Chklovskii
{"title":"生物学上似是而非的独立成分分析的单层网络。","authors":"David Lipshutz,&nbsp;Cengiz Pehlevan,&nbsp;Dmitri B Chklovskii","doi":"10.1007/s00422-022-00943-8","DOIUrl":null,"url":null,"abstract":"<p><p>An important problem in neuroscience is to understand how brains extract relevant signals from mixtures of unknown sources, i.e., perform blind source separation. To model how the brain performs this task, we seek a biologically plausible single-layer neural network implementation of a blind source separation algorithm. For biological plausibility, we require the network to satisfy the following three basic properties of neuronal circuits: (i) the network operates in the online setting; (ii) synaptic learning rules are local; and (iii) neuronal outputs are nonnegative. Closest is the work by Pehlevan et al. (Neural Comput 29:2925-2954, 2017), which considers nonnegative independent component analysis (NICA), a special case of blind source separation that assumes the mixture is a linear combination of uncorrelated, nonnegative sources. They derive an algorithm with a biologically plausible 2-layer network implementation. In this work, we improve upon their result by deriving 2 algorithms for NICA, each with a biologically plausible single-layer network implementation. The first algorithm maps onto a network with indirect lateral connections mediated by interneurons. The second algorithm maps onto a network with direct lateral connections and multi-compartmental output neurons.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Biologically plausible single-layer networks for nonnegative independent component analysis.\",\"authors\":\"David Lipshutz,&nbsp;Cengiz Pehlevan,&nbsp;Dmitri B Chklovskii\",\"doi\":\"10.1007/s00422-022-00943-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An important problem in neuroscience is to understand how brains extract relevant signals from mixtures of unknown sources, i.e., perform blind source separation. To model how the brain performs this task, we seek a biologically plausible single-layer neural network implementation of a blind source separation algorithm. For biological plausibility, we require the network to satisfy the following three basic properties of neuronal circuits: (i) the network operates in the online setting; (ii) synaptic learning rules are local; and (iii) neuronal outputs are nonnegative. Closest is the work by Pehlevan et al. (Neural Comput 29:2925-2954, 2017), which considers nonnegative independent component analysis (NICA), a special case of blind source separation that assumes the mixture is a linear combination of uncorrelated, nonnegative sources. They derive an algorithm with a biologically plausible 2-layer network implementation. In this work, we improve upon their result by deriving 2 algorithms for NICA, each with a biologically plausible single-layer network implementation. The first algorithm maps onto a network with indirect lateral connections mediated by interneurons. The second algorithm maps onto a network with direct lateral connections and multi-compartmental output neurons.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00422-022-00943-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00422-022-00943-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 10

摘要

神经科学中的一个重要问题是了解大脑如何从未知来源的混合物中提取相关信号,即进行盲源分离。为了模拟大脑如何执行这项任务,我们寻求一种生物学上合理的单层神经网络实现盲源分离算法。为了生物合理性,我们要求网络满足神经元回路的以下三个基本属性:(i)网络在在线设置中运行;(ii)突触学习规则是局部的;(iii)神经元输出是非负的。最接近的是Pehlevan等人的工作(Neural Comput 29:2925-2954, 2017),它考虑了非负独立分量分析(NICA),这是盲源分离的一种特殊情况,假设混合物是不相关的非负源的线性组合。他们推导出一种具有生物学上合理的两层网络实现的算法。在这项工作中,我们通过推导NICA的两种算法来改进他们的结果,每种算法都具有生物学上合理的单层网络实现。第一种算法映射到由中间神经元介导的间接横向连接网络。第二种算法映射到一个具有直接横向连接和多室输出神经元的网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biologically plausible single-layer networks for nonnegative independent component analysis.

An important problem in neuroscience is to understand how brains extract relevant signals from mixtures of unknown sources, i.e., perform blind source separation. To model how the brain performs this task, we seek a biologically plausible single-layer neural network implementation of a blind source separation algorithm. For biological plausibility, we require the network to satisfy the following three basic properties of neuronal circuits: (i) the network operates in the online setting; (ii) synaptic learning rules are local; and (iii) neuronal outputs are nonnegative. Closest is the work by Pehlevan et al. (Neural Comput 29:2925-2954, 2017), which considers nonnegative independent component analysis (NICA), a special case of blind source separation that assumes the mixture is a linear combination of uncorrelated, nonnegative sources. They derive an algorithm with a biologically plausible 2-layer network implementation. In this work, we improve upon their result by deriving 2 algorithms for NICA, each with a biologically plausible single-layer network implementation. The first algorithm maps onto a network with indirect lateral connections mediated by interneurons. The second algorithm maps onto a network with direct lateral connections and multi-compartmental output neurons.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Intentions to move abroad among medical students: a cross-sectional study to investigate determinants and opinions. The change process questionnaire (CPQ): A psychometric validation. Prevalence and predictors of hand hygiene compliance in clinical, surgical and intensive care unit wards: results of a second cross-sectional study at the Umberto I teaching hospital of Rome. The prevention of medication errors in the home care setting: a scoping review. Differential Costs of Raising Grandchildren on Older Mother-Adult Child Relations in Black and White Families.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1