干细胞因子治疗对卵巢功能不全和高龄小鼠体内原始卵泡活化的促进作用。

IF 3.6 2区 医学 Q2 DEVELOPMENTAL BIOLOGY Molecular human reproduction Pub Date : 2022-12-28 DOI:10.1093/molehr/gaac041
Yibo Wang, Jiawei Zhang, Jing Liang, Longzhong Jia, Shudong Niu, Kaixin Cheng, Chen Yang, Zining Lu, Lu Mu, Xuebing Yang, Yan Zhang, Hua Zhang
{"title":"干细胞因子治疗对卵巢功能不全和高龄小鼠体内原始卵泡活化的促进作用。","authors":"Yibo Wang,&nbsp;Jiawei Zhang,&nbsp;Jing Liang,&nbsp;Longzhong Jia,&nbsp;Shudong Niu,&nbsp;Kaixin Cheng,&nbsp;Chen Yang,&nbsp;Zining Lu,&nbsp;Lu Mu,&nbsp;Xuebing Yang,&nbsp;Yan Zhang,&nbsp;Hua Zhang","doi":"10.1093/molehr/gaac041","DOIUrl":null,"url":null,"abstract":"<p><p>Dormant primordial follicles (PFs) are the most abundant reproductive resource in mammalian ovaries. With advances in the mechanism of study of the regulation of PF activation, PFs have been used to improve fertility in clinical practice. As a central controlling element of follicle activation signaling, the pre-granulosa cell-secreted stem cell factor (SCF; also known as KIT ligand, KITL), which initiates the growth of dormant oocytes, is an ideal natural activator that stimulates follicle activation. However, no systematic study has been conducted to identify the activating effect of SCF in vivo and in vitro. In this study, by combining an in vitro whole ovary culture system and several mouse models, we provide a series of experimental evidence that SCF is an efficient activator for improving PF activation in mouse ovaries. Our in vitro study showed that SCF increased phosphatidylinositol 3-kinase (PI3K) signaling and PF activation ratio in neonatal ovaries. In vivo ovarian non-invasive topical administrations of SCF to the ovaries efficiently improved follicle activation and development, oocyte retrieval ratio and fertility in inducible premature ovarian insufficiency mouse models and aged mice. Our study suggests that SCF is an efficient growth factor that can be applied to improve PF activation.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":"29 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vivo promotion of primordial follicle activation by stem cell factor treatment in mice with premature ovarian insufficiency and advanced age.\",\"authors\":\"Yibo Wang,&nbsp;Jiawei Zhang,&nbsp;Jing Liang,&nbsp;Longzhong Jia,&nbsp;Shudong Niu,&nbsp;Kaixin Cheng,&nbsp;Chen Yang,&nbsp;Zining Lu,&nbsp;Lu Mu,&nbsp;Xuebing Yang,&nbsp;Yan Zhang,&nbsp;Hua Zhang\",\"doi\":\"10.1093/molehr/gaac041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dormant primordial follicles (PFs) are the most abundant reproductive resource in mammalian ovaries. With advances in the mechanism of study of the regulation of PF activation, PFs have been used to improve fertility in clinical practice. As a central controlling element of follicle activation signaling, the pre-granulosa cell-secreted stem cell factor (SCF; also known as KIT ligand, KITL), which initiates the growth of dormant oocytes, is an ideal natural activator that stimulates follicle activation. However, no systematic study has been conducted to identify the activating effect of SCF in vivo and in vitro. In this study, by combining an in vitro whole ovary culture system and several mouse models, we provide a series of experimental evidence that SCF is an efficient activator for improving PF activation in mouse ovaries. Our in vitro study showed that SCF increased phosphatidylinositol 3-kinase (PI3K) signaling and PF activation ratio in neonatal ovaries. In vivo ovarian non-invasive topical administrations of SCF to the ovaries efficiently improved follicle activation and development, oocyte retrieval ratio and fertility in inducible premature ovarian insufficiency mouse models and aged mice. Our study suggests that SCF is an efficient growth factor that can be applied to improve PF activation.</p>\",\"PeriodicalId\":18759,\"journal\":{\"name\":\"Molecular human reproduction\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular human reproduction\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/molehr/gaac041\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular human reproduction","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/molehr/gaac041","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

休眠原始卵泡是哺乳动物卵巢中最丰富的生殖资源。随着对PF活化调控机制研究的不断深入,PF已在临床上用于提高生育能力。作为卵泡激活信号的中心控制元件,颗粒前细胞分泌干细胞因子(SCF;也被称为KIT配体,KITL),它启动休眠卵母细胞的生长,是一种理想的天然激活剂,刺激卵泡激活。然而,目前还没有系统的研究来确定SCF在体内和体外的激活作用。本研究通过体外全卵巢培养系统和几种小鼠模型相结合,提供了一系列实验证据,证明SCF是一种有效的激活剂,可以改善小鼠卵巢中PF的激活。我们的体外研究表明,SCF增加了新生儿卵巢中磷脂酰肌醇3-激酶(PI3K)信号传导和PF激活率。体外无创卵巢外用SCF有效改善了诱导性卵巢早衰小鼠模型和老年小鼠的卵泡激活和发育、卵母细胞回收率和生育能力。我们的研究表明,SCF是一种有效的生长因子,可以用于改善PF的激活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In vivo promotion of primordial follicle activation by stem cell factor treatment in mice with premature ovarian insufficiency and advanced age.

Dormant primordial follicles (PFs) are the most abundant reproductive resource in mammalian ovaries. With advances in the mechanism of study of the regulation of PF activation, PFs have been used to improve fertility in clinical practice. As a central controlling element of follicle activation signaling, the pre-granulosa cell-secreted stem cell factor (SCF; also known as KIT ligand, KITL), which initiates the growth of dormant oocytes, is an ideal natural activator that stimulates follicle activation. However, no systematic study has been conducted to identify the activating effect of SCF in vivo and in vitro. In this study, by combining an in vitro whole ovary culture system and several mouse models, we provide a series of experimental evidence that SCF is an efficient activator for improving PF activation in mouse ovaries. Our in vitro study showed that SCF increased phosphatidylinositol 3-kinase (PI3K) signaling and PF activation ratio in neonatal ovaries. In vivo ovarian non-invasive topical administrations of SCF to the ovaries efficiently improved follicle activation and development, oocyte retrieval ratio and fertility in inducible premature ovarian insufficiency mouse models and aged mice. Our study suggests that SCF is an efficient growth factor that can be applied to improve PF activation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular human reproduction
Molecular human reproduction 生物-发育生物学
CiteScore
8.30
自引率
0.00%
发文量
37
审稿时长
6-12 weeks
期刊介绍: MHR publishes original research reports, commentaries and reviews on topics in the basic science of reproduction, including: reproductive tract physiology and pathology; gonad function and gametogenesis; fertilization; embryo development; implantation; and pregnancy and parturition. Irrespective of the study subject, research papers should have a mechanistic aspect.
期刊最新文献
Endometrial stromal cell signaling and microRNA exosome content in women with adenomyosis. mTOR inhibitors as potential therapeutics for endometriosis: a narrative review. Gene expression analysis of ovarian follicles and stromal cells in girls with Turner syndrome. Ectopic endometrial stromal cell-derived extracellular vesicles encapsulating microRNA-25-3p induce endometrial collagen I deposition impairing decidualization in endometriosis. Placental gene therapy in nonhuman primates: a pilot study of maternal, placental, and fetal response to non-viral, polymeric nanoparticle delivery of IGF1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1