Tomasz Pawlak , Piotr Paluch , Rafał Dolot , Grzegorz Bujacz , Marek J. Potrzebowski
{"title":"新型特氟米特盐(TFM) -单晶x射线和固态核磁共振研究","authors":"Tomasz Pawlak , Piotr Paluch , Rafał Dolot , Grzegorz Bujacz , Marek J. Potrzebowski","doi":"10.1016/j.ssnmr.2022.101820","DOIUrl":null,"url":null,"abstract":"<div><p>New salts of teriflunomide <strong>TFM</strong> (drug approved for Multiple Sclerosis treatment) with inorganic counterions: lithium (<strong>TFM_Li)</strong>, sodium (<strong>TFM_Na)</strong>, potassium (<strong>TFM_K)</strong>, rubidium (<strong>TFM_Rb)</strong>, caesium (<strong>TFM_Cs)</strong> and ammonium (<strong>TFM_NH</strong><sub><strong>4</strong></sub><strong>)</strong> were prepared and investigated employing solid state NMR Spectroscopy, Powder X-ray Diffraction PXRD and Single Crystal X-ray Diffraction (SC XRD). Crystal and molecular structures of three salts: <strong>TFM_Na</strong> (CCDC: 2173257), <strong>TFM_Cs</strong> (CCDC: 2165288) and <strong>TFM_NH</strong><sub><strong>4</strong></sub> (CCDC: 2165281) were determined and deposited. Compared to the native <strong>TFM</strong>, for all crystalline salt structures, a conformational change of the teriflunomide molecule involving about 180-degree rotation of the end group, forming an intramolecular hydrogen bond N–H⋯O is observed. By applying a complementary multi-technique approach, employing 1D and 2D solid state MAS NMR techniques, single and powder X-ray diffraction measurements, as well as the DFT-based GIPAW calculations of NMR chemical shifts for <strong>TFM_Na</strong> and <strong>TFM_Cs</strong> allowed to propose structural features of <strong>TFM_Li</strong> for which it was not possible to obtain adequate material for single crystal X-Ray measurement.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"122 ","pages":"Article 101820"},"PeriodicalIF":1.8000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0926204022000492/pdfft?md5=b5f36b38b63761d08c402a715bb94fef&pid=1-s2.0-S0926204022000492-main.pdf","citationCount":"0","resultStr":"{\"title\":\"New salts of teriflunomide (TFM) – Single crystal X-ray and solid state NMR investigation\",\"authors\":\"Tomasz Pawlak , Piotr Paluch , Rafał Dolot , Grzegorz Bujacz , Marek J. Potrzebowski\",\"doi\":\"10.1016/j.ssnmr.2022.101820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>New salts of teriflunomide <strong>TFM</strong> (drug approved for Multiple Sclerosis treatment) with inorganic counterions: lithium (<strong>TFM_Li)</strong>, sodium (<strong>TFM_Na)</strong>, potassium (<strong>TFM_K)</strong>, rubidium (<strong>TFM_Rb)</strong>, caesium (<strong>TFM_Cs)</strong> and ammonium (<strong>TFM_NH</strong><sub><strong>4</strong></sub><strong>)</strong> were prepared and investigated employing solid state NMR Spectroscopy, Powder X-ray Diffraction PXRD and Single Crystal X-ray Diffraction (SC XRD). Crystal and molecular structures of three salts: <strong>TFM_Na</strong> (CCDC: 2173257), <strong>TFM_Cs</strong> (CCDC: 2165288) and <strong>TFM_NH</strong><sub><strong>4</strong></sub> (CCDC: 2165281) were determined and deposited. Compared to the native <strong>TFM</strong>, for all crystalline salt structures, a conformational change of the teriflunomide molecule involving about 180-degree rotation of the end group, forming an intramolecular hydrogen bond N–H⋯O is observed. By applying a complementary multi-technique approach, employing 1D and 2D solid state MAS NMR techniques, single and powder X-ray diffraction measurements, as well as the DFT-based GIPAW calculations of NMR chemical shifts for <strong>TFM_Na</strong> and <strong>TFM_Cs</strong> allowed to propose structural features of <strong>TFM_Li</strong> for which it was not possible to obtain adequate material for single crystal X-Ray measurement.</p></div>\",\"PeriodicalId\":21937,\"journal\":{\"name\":\"Solid state nuclear magnetic resonance\",\"volume\":\"122 \",\"pages\":\"Article 101820\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0926204022000492/pdfft?md5=b5f36b38b63761d08c402a715bb94fef&pid=1-s2.0-S0926204022000492-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid state nuclear magnetic resonance\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926204022000492\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid state nuclear magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926204022000492","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
New salts of teriflunomide (TFM) – Single crystal X-ray and solid state NMR investigation
New salts of teriflunomide TFM (drug approved for Multiple Sclerosis treatment) with inorganic counterions: lithium (TFM_Li), sodium (TFM_Na), potassium (TFM_K), rubidium (TFM_Rb), caesium (TFM_Cs) and ammonium (TFM_NH4) were prepared and investigated employing solid state NMR Spectroscopy, Powder X-ray Diffraction PXRD and Single Crystal X-ray Diffraction (SC XRD). Crystal and molecular structures of three salts: TFM_Na (CCDC: 2173257), TFM_Cs (CCDC: 2165288) and TFM_NH4 (CCDC: 2165281) were determined and deposited. Compared to the native TFM, for all crystalline salt structures, a conformational change of the teriflunomide molecule involving about 180-degree rotation of the end group, forming an intramolecular hydrogen bond N–H⋯O is observed. By applying a complementary multi-technique approach, employing 1D and 2D solid state MAS NMR techniques, single and powder X-ray diffraction measurements, as well as the DFT-based GIPAW calculations of NMR chemical shifts for TFM_Na and TFM_Cs allowed to propose structural features of TFM_Li for which it was not possible to obtain adequate material for single crystal X-Ray measurement.
期刊介绍:
The journal Solid State Nuclear Magnetic Resonance publishes original manuscripts of high scientific quality dealing with all experimental and theoretical aspects of solid state NMR. This includes advances in instrumentation, development of new experimental techniques and methodology, new theoretical insights, new data processing and simulation methods, and original applications of established or novel methods to scientific problems.