Şükran Altun, Ali Eslem Kadak, Aygül Küçükgülmez, Osman Gülnaz, Mehmet Çelik
{"title":"用朗穆尔吸附等温线和动力学模型解释壳聚糖对苯醚甲环唑的吸附作用。","authors":"Şükran Altun, Ali Eslem Kadak, Aygül Küçükgülmez, Osman Gülnaz, Mehmet Çelik","doi":"10.1007/s43188-022-00152-2","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, the adsorption of toxic difenoconazole pesticide was investigated by using chitosan. In the first phase of the study, chitosan was extracted from deep-water pink shrimp (<i>Parapenaeus longirostris</i>) shells, by deacetylation of the chitin, which is separated and disposed of after meat extraction in processing facilities in Turkey. The deacetylation degree, molecular weight, viscosity, moisture, and crude-ash values of the extracted chitosan were determined. Chitosan, having a high deacetylation degree (90.21%), was used as the adsorbent. In the second phase of the study, the effects of pH, temperature, and pesticide concentration on the adsorption were investigated. The optimum pH level for pesticide adsorption was determined as 5. It was observed that the adsorption increases as the temperature increases. A rapid increase was observed within the first 5 min of the 60-minute adsorption process in difenoconazole concentrations of 5, 15, and 25 µg/L, and after 10 min, the adsorption rate was stable. The Langmuir isotherm parameters regarding the adsorption were determined as aL = 0.635, kL = 15.10, and the Q<sub>max</sub> value was calculated as 23.77 mg/g. In the evaluation of overall study results, it was determined that the chitosan biopolymer is a suitable adsorbent for difenoconazole pesticide adsorption.</p>","PeriodicalId":23181,"journal":{"name":"Toxicological Research","volume":"39 1","pages":"127-133"},"PeriodicalIF":1.6000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9839914/pdf/","citationCount":"2","resultStr":"{\"title\":\"Explanation of difenoconazole removal by chitosan with Langmuir adsorption isotherm and kinetic modeling.\",\"authors\":\"Şükran Altun, Ali Eslem Kadak, Aygül Küçükgülmez, Osman Gülnaz, Mehmet Çelik\",\"doi\":\"10.1007/s43188-022-00152-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, the adsorption of toxic difenoconazole pesticide was investigated by using chitosan. In the first phase of the study, chitosan was extracted from deep-water pink shrimp (<i>Parapenaeus longirostris</i>) shells, by deacetylation of the chitin, which is separated and disposed of after meat extraction in processing facilities in Turkey. The deacetylation degree, molecular weight, viscosity, moisture, and crude-ash values of the extracted chitosan were determined. Chitosan, having a high deacetylation degree (90.21%), was used as the adsorbent. In the second phase of the study, the effects of pH, temperature, and pesticide concentration on the adsorption were investigated. The optimum pH level for pesticide adsorption was determined as 5. It was observed that the adsorption increases as the temperature increases. A rapid increase was observed within the first 5 min of the 60-minute adsorption process in difenoconazole concentrations of 5, 15, and 25 µg/L, and after 10 min, the adsorption rate was stable. The Langmuir isotherm parameters regarding the adsorption were determined as aL = 0.635, kL = 15.10, and the Q<sub>max</sub> value was calculated as 23.77 mg/g. In the evaluation of overall study results, it was determined that the chitosan biopolymer is a suitable adsorbent for difenoconazole pesticide adsorption.</p>\",\"PeriodicalId\":23181,\"journal\":{\"name\":\"Toxicological Research\",\"volume\":\"39 1\",\"pages\":\"127-133\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9839914/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicological Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s43188-022-00152-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s43188-022-00152-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Explanation of difenoconazole removal by chitosan with Langmuir adsorption isotherm and kinetic modeling.
In this study, the adsorption of toxic difenoconazole pesticide was investigated by using chitosan. In the first phase of the study, chitosan was extracted from deep-water pink shrimp (Parapenaeus longirostris) shells, by deacetylation of the chitin, which is separated and disposed of after meat extraction in processing facilities in Turkey. The deacetylation degree, molecular weight, viscosity, moisture, and crude-ash values of the extracted chitosan were determined. Chitosan, having a high deacetylation degree (90.21%), was used as the adsorbent. In the second phase of the study, the effects of pH, temperature, and pesticide concentration on the adsorption were investigated. The optimum pH level for pesticide adsorption was determined as 5. It was observed that the adsorption increases as the temperature increases. A rapid increase was observed within the first 5 min of the 60-minute adsorption process in difenoconazole concentrations of 5, 15, and 25 µg/L, and after 10 min, the adsorption rate was stable. The Langmuir isotherm parameters regarding the adsorption were determined as aL = 0.635, kL = 15.10, and the Qmax value was calculated as 23.77 mg/g. In the evaluation of overall study results, it was determined that the chitosan biopolymer is a suitable adsorbent for difenoconazole pesticide adsorption.
期刊介绍:
Toxicological Research is the official journal of the Korean Society of Toxicology. The journal covers all areas of Toxicological Research of chemicals, drugs and environmental agents affecting human and animals, which in turn impact public health. The journal’s mission is to disseminate scientific and technical information on diverse areas of toxicological research. Contributions by toxicologists, molecular biologists, geneticists, biochemists, pharmacologists, clinical researchers and epidemiologists with a global view on public health through toxicological research are welcome. Emphasis will be given to articles providing an understanding of the toxicological mechanisms affecting animal, human and public health. In the case of research articles using natural extracts, detailed information with respect to the origin, extraction method, chemical profiles, and characterization of standard compounds to ensure the reproducible pharmacological activity should be provided.