Anapaula Themann, Minerva Rodriguez, Israel Garcia-Carachure, Omar Lira, Sergio D Iñiguez
{"title":"青少年氟西汀暴露增加了成年雄性Sprague-Dawley大鼠前额皮质内erk相关信号。","authors":"Anapaula Themann, Minerva Rodriguez, Israel Garcia-Carachure, Omar Lira, Sergio D Iñiguez","doi":"10.1093/oons/kvac015","DOIUrl":null,"url":null,"abstract":"<p><p>There has been a disproportionate increase in fluoxetine (FLX) prescription rates within the juvenile population. Thus, we evaluated how adolescent FLX exposure alters expression/phosphorylation of proteins from the extracellular signal regulated kinase (ERK)-1/2 cascade within the adult prefrontal cortex (PFC). Male Sprague-Dawley rats were exposed to FLX (20 mg/kg) for 15 consecutive days (postnatal-day [PD] 35-49). At PD70 (adulthood), we examined protein markers for ERK1/2, ribosomal S6 kinase (RSK), and mammalian target of rapamycin (mTOR). FLX-pretreatment decreased body weight, while increasing PFC phosphorylation of ERK1/2 and RSK, as well as total mTOR protein expression in adulthood. We provide first-line evidence that juvenile FLX-pretreatment induces long-term decreases in body weight-gain, along with neurobiological changes in the adult PFC - highlighting that early-life antidepressant exposure increases ERK-related signaling markers in later life.</p>","PeriodicalId":74386,"journal":{"name":"Oxford open neuroscience","volume":"1 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9918101/pdf/","citationCount":"2","resultStr":"{\"title\":\"Adolescent fluoxetine exposure increases ERK-related signaling within the prefrontal cortex of adult male Sprague-Dawley rats.\",\"authors\":\"Anapaula Themann, Minerva Rodriguez, Israel Garcia-Carachure, Omar Lira, Sergio D Iñiguez\",\"doi\":\"10.1093/oons/kvac015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There has been a disproportionate increase in fluoxetine (FLX) prescription rates within the juvenile population. Thus, we evaluated how adolescent FLX exposure alters expression/phosphorylation of proteins from the extracellular signal regulated kinase (ERK)-1/2 cascade within the adult prefrontal cortex (PFC). Male Sprague-Dawley rats were exposed to FLX (20 mg/kg) for 15 consecutive days (postnatal-day [PD] 35-49). At PD70 (adulthood), we examined protein markers for ERK1/2, ribosomal S6 kinase (RSK), and mammalian target of rapamycin (mTOR). FLX-pretreatment decreased body weight, while increasing PFC phosphorylation of ERK1/2 and RSK, as well as total mTOR protein expression in adulthood. We provide first-line evidence that juvenile FLX-pretreatment induces long-term decreases in body weight-gain, along with neurobiological changes in the adult PFC - highlighting that early-life antidepressant exposure increases ERK-related signaling markers in later life.</p>\",\"PeriodicalId\":74386,\"journal\":{\"name\":\"Oxford open neuroscience\",\"volume\":\"1 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9918101/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxford open neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oons/kvac015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxford open neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oons/kvac015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adolescent fluoxetine exposure increases ERK-related signaling within the prefrontal cortex of adult male Sprague-Dawley rats.
There has been a disproportionate increase in fluoxetine (FLX) prescription rates within the juvenile population. Thus, we evaluated how adolescent FLX exposure alters expression/phosphorylation of proteins from the extracellular signal regulated kinase (ERK)-1/2 cascade within the adult prefrontal cortex (PFC). Male Sprague-Dawley rats were exposed to FLX (20 mg/kg) for 15 consecutive days (postnatal-day [PD] 35-49). At PD70 (adulthood), we examined protein markers for ERK1/2, ribosomal S6 kinase (RSK), and mammalian target of rapamycin (mTOR). FLX-pretreatment decreased body weight, while increasing PFC phosphorylation of ERK1/2 and RSK, as well as total mTOR protein expression in adulthood. We provide first-line evidence that juvenile FLX-pretreatment induces long-term decreases in body weight-gain, along with neurobiological changes in the adult PFC - highlighting that early-life antidepressant exposure increases ERK-related signaling markers in later life.