{"title":"利用实时定量聚合酶链反应,质体拷贝数作为植物产品质量生物标志物的潜在作用。","authors":"Amita Pandey, Shifa Chaudhary, Binu Bhat","doi":"10.2174/1389202923666220513111643","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background</i>:</b> Plastids are plant-specific semi-autonomous self-replicating organelles, containing circular DNA molecules called plastomes. Plastids perform crucial functions, including photosynthesis, stress perception and response, synthesis of metabolites, and storage. The plastome and plastid numbers have been shown to be modulated by developmental stage and environmental stimuli and have been used as a biomarker (identification of plant species) and biosensor (an indicator of abiotic and biotic stresses). However, the determination of plastome sequence and plastid number is a laborious process requiring sophisticated equipment. <b><i>Methods</i>:</b> This study proposes using plastome copy number (PCN), which can be determined rapidly by real-time quantitative polymerase chain reaction (RT-qPCR) as a plant product quality biomarker. This study shows that the PCN log<sub>10</sub> and range PCN log<sub>10</sub> values calculated from RT-qPCR data, which was obtained for two years from leaves and lint samples of cotton and seed samples of cotton, rice, soybean, maize, and sesame can be used for assessing the quality of the samples. <b><i>Results</i>:</b> Observation of lower range PCN log<sub>10</sub> values for CS (0.31) and CR (0.58) indicated that the PCN showed little variance from the mean PCN log<sub>10</sub> values for CS (3.81) and CR (3.85), suggesting that these samples might have encountered ambient environmental conditions during growth and/ or post-harvest storage and processing. This conclusion was further supported by observation of higher range PCN log<sub>10</sub> values for RS (3.09) <i>versus</i> RP (0.05), where rice seeds in the RP group had protective hull covering compared to broken hull-less seeds in the RS group. To further support that PCN is affected by external factors, rice seeds treated with high temperatures and pathogens exhibited lower PCN values when compared to untreated seeds. Furthermore, the range PCN log<sub>10</sub> values were found to be high for cotton leaf (CL) and lint (Clt) sample groups, 4.11 and 3.63, respectively, where leaf and lint samples were of different sizes, indicating that leaf samples might be of different developmental stage and lint samples might have been processed differently, supporting that the PCN is affected by both internal and external factors, respectively. Moreover, PCN log<sub>10</sub> values were found to be plant specific, with oil containing seeds such as SeS (6.49) and MS (5.05) exhibiting high PCN log<sub>10</sub> values compared to non-oil seeds such as SS (1.96). <b><i>Conclusion</i>:</b> In conclusion, it was observed that PCN log<sub>10</sub> values calculated from RT-qPCR assays were specific to plant species and the range of PCN log<sub>10</sub> values can be directly correlated to the internal and external factors and, therefore might be used as a potential biomarker for assessing the quality of plant products.</p>","PeriodicalId":10803,"journal":{"name":"Current Genomics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/39/51/CG-23-289.PMC9875542.pdf","citationCount":"1","resultStr":"{\"title\":\"The Potential Role of Plastome Copy Number as a Quality Biomarker for Plant Products using Real-time Quantitative Polymerase Chain Reaction.\",\"authors\":\"Amita Pandey, Shifa Chaudhary, Binu Bhat\",\"doi\":\"10.2174/1389202923666220513111643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Background</i>:</b> Plastids are plant-specific semi-autonomous self-replicating organelles, containing circular DNA molecules called plastomes. Plastids perform crucial functions, including photosynthesis, stress perception and response, synthesis of metabolites, and storage. The plastome and plastid numbers have been shown to be modulated by developmental stage and environmental stimuli and have been used as a biomarker (identification of plant species) and biosensor (an indicator of abiotic and biotic stresses). However, the determination of plastome sequence and plastid number is a laborious process requiring sophisticated equipment. <b><i>Methods</i>:</b> This study proposes using plastome copy number (PCN), which can be determined rapidly by real-time quantitative polymerase chain reaction (RT-qPCR) as a plant product quality biomarker. This study shows that the PCN log<sub>10</sub> and range PCN log<sub>10</sub> values calculated from RT-qPCR data, which was obtained for two years from leaves and lint samples of cotton and seed samples of cotton, rice, soybean, maize, and sesame can be used for assessing the quality of the samples. <b><i>Results</i>:</b> Observation of lower range PCN log<sub>10</sub> values for CS (0.31) and CR (0.58) indicated that the PCN showed little variance from the mean PCN log<sub>10</sub> values for CS (3.81) and CR (3.85), suggesting that these samples might have encountered ambient environmental conditions during growth and/ or post-harvest storage and processing. This conclusion was further supported by observation of higher range PCN log<sub>10</sub> values for RS (3.09) <i>versus</i> RP (0.05), where rice seeds in the RP group had protective hull covering compared to broken hull-less seeds in the RS group. To further support that PCN is affected by external factors, rice seeds treated with high temperatures and pathogens exhibited lower PCN values when compared to untreated seeds. Furthermore, the range PCN log<sub>10</sub> values were found to be high for cotton leaf (CL) and lint (Clt) sample groups, 4.11 and 3.63, respectively, where leaf and lint samples were of different sizes, indicating that leaf samples might be of different developmental stage and lint samples might have been processed differently, supporting that the PCN is affected by both internal and external factors, respectively. Moreover, PCN log<sub>10</sub> values were found to be plant specific, with oil containing seeds such as SeS (6.49) and MS (5.05) exhibiting high PCN log<sub>10</sub> values compared to non-oil seeds such as SS (1.96). <b><i>Conclusion</i>:</b> In conclusion, it was observed that PCN log<sub>10</sub> values calculated from RT-qPCR assays were specific to plant species and the range of PCN log<sub>10</sub> values can be directly correlated to the internal and external factors and, therefore might be used as a potential biomarker for assessing the quality of plant products.</p>\",\"PeriodicalId\":10803,\"journal\":{\"name\":\"Current Genomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/39/51/CG-23-289.PMC9875542.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/1389202923666220513111643\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1389202923666220513111643","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The Potential Role of Plastome Copy Number as a Quality Biomarker for Plant Products using Real-time Quantitative Polymerase Chain Reaction.
Background: Plastids are plant-specific semi-autonomous self-replicating organelles, containing circular DNA molecules called plastomes. Plastids perform crucial functions, including photosynthesis, stress perception and response, synthesis of metabolites, and storage. The plastome and plastid numbers have been shown to be modulated by developmental stage and environmental stimuli and have been used as a biomarker (identification of plant species) and biosensor (an indicator of abiotic and biotic stresses). However, the determination of plastome sequence and plastid number is a laborious process requiring sophisticated equipment. Methods: This study proposes using plastome copy number (PCN), which can be determined rapidly by real-time quantitative polymerase chain reaction (RT-qPCR) as a plant product quality biomarker. This study shows that the PCN log10 and range PCN log10 values calculated from RT-qPCR data, which was obtained for two years from leaves and lint samples of cotton and seed samples of cotton, rice, soybean, maize, and sesame can be used for assessing the quality of the samples. Results: Observation of lower range PCN log10 values for CS (0.31) and CR (0.58) indicated that the PCN showed little variance from the mean PCN log10 values for CS (3.81) and CR (3.85), suggesting that these samples might have encountered ambient environmental conditions during growth and/ or post-harvest storage and processing. This conclusion was further supported by observation of higher range PCN log10 values for RS (3.09) versus RP (0.05), where rice seeds in the RP group had protective hull covering compared to broken hull-less seeds in the RS group. To further support that PCN is affected by external factors, rice seeds treated with high temperatures and pathogens exhibited lower PCN values when compared to untreated seeds. Furthermore, the range PCN log10 values were found to be high for cotton leaf (CL) and lint (Clt) sample groups, 4.11 and 3.63, respectively, where leaf and lint samples were of different sizes, indicating that leaf samples might be of different developmental stage and lint samples might have been processed differently, supporting that the PCN is affected by both internal and external factors, respectively. Moreover, PCN log10 values were found to be plant specific, with oil containing seeds such as SeS (6.49) and MS (5.05) exhibiting high PCN log10 values compared to non-oil seeds such as SS (1.96). Conclusion: In conclusion, it was observed that PCN log10 values calculated from RT-qPCR assays were specific to plant species and the range of PCN log10 values can be directly correlated to the internal and external factors and, therefore might be used as a potential biomarker for assessing the quality of plant products.
期刊介绍:
Current Genomics is a peer-reviewed journal that provides essential reading about the latest and most important developments in genome science and related fields of research. Systems biology, systems modeling, machine learning, network inference, bioinformatics, computational biology, epigenetics, single cell genomics, extracellular vesicles, quantitative biology, and synthetic biology for the study of evolution, development, maintenance, aging and that of human health, human diseases, clinical genomics and precision medicine are topics of particular interest. The journal covers plant genomics. The journal will not consider articles dealing with breeding and livestock.
Current Genomics publishes three types of articles including:
i) Research papers from internationally-recognized experts reporting on new and original data generated at the genome scale level. Position papers dealing with new or challenging methodological approaches, whether experimental or mathematical, are greatly welcome in this section.
ii) Authoritative and comprehensive full-length or mini reviews from widely recognized experts, covering the latest developments in genome science and related fields of research such as systems biology, statistics and machine learning, quantitative biology, and precision medicine. Proposals for mini-hot topics (2-3 review papers) and full hot topics (6-8 review papers) guest edited by internationally-recognized experts are welcome in this section. Hot topic proposals should not contain original data and they should contain articles originating from at least 2 different countries.
iii) Opinion papers from internationally recognized experts addressing contemporary questions and issues in the field of genome science and systems biology and basic and clinical research practices.