{"title":"纳米晶体的运动学散射。","authors":"Olivier Thomas, Ismail Cevdet Noyan","doi":"10.1107/S160057672201069X","DOIUrl":null,"url":null,"abstract":"<p><p>Various formulations are compared which describe diffraction from ultra-thin single-crystal films in the symmetric scattering configuration, showing that, for this thickness range, several implicit assumptions in these formulations are no longer satisfied. Consequently, the position, integrated intensity and integral breadth of a diffraction peak cannot be related to the lattice spacing of the material or the number of unit cells along the diffraction vector using traditional analysis methods. Some simple equations are proposed to obtain the correct values of these parameters for this specific sample/diffraction geometry combination. More generally, the development of rigorous formalisms for analyzing diffraction from nanocrystals is proposed.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9901918/pdf/","citationCount":"0","resultStr":"{\"title\":\"Kinematic scattering by nanocrystals.\",\"authors\":\"Olivier Thomas, Ismail Cevdet Noyan\",\"doi\":\"10.1107/S160057672201069X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Various formulations are compared which describe diffraction from ultra-thin single-crystal films in the symmetric scattering configuration, showing that, for this thickness range, several implicit assumptions in these formulations are no longer satisfied. Consequently, the position, integrated intensity and integral breadth of a diffraction peak cannot be related to the lattice spacing of the material or the number of unit cells along the diffraction vector using traditional analysis methods. Some simple equations are proposed to obtain the correct values of these parameters for this specific sample/diffraction geometry combination. More generally, the development of rigorous formalisms for analyzing diffraction from nanocrystals is proposed.</p>\",\"PeriodicalId\":14950,\"journal\":{\"name\":\"Journal of Applied Crystallography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9901918/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Crystallography\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1107/S160057672201069X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S160057672201069X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Various formulations are compared which describe diffraction from ultra-thin single-crystal films in the symmetric scattering configuration, showing that, for this thickness range, several implicit assumptions in these formulations are no longer satisfied. Consequently, the position, integrated intensity and integral breadth of a diffraction peak cannot be related to the lattice spacing of the material or the number of unit cells along the diffraction vector using traditional analysis methods. Some simple equations are proposed to obtain the correct values of these parameters for this specific sample/diffraction geometry combination. More generally, the development of rigorous formalisms for analyzing diffraction from nanocrystals is proposed.
期刊介绍:
Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.