{"title":"GAAP:一个基于gui的基因组组装和注释包。","authors":"Deepak Singla, Inderjit Singh Yadav","doi":"10.2174/1389202923666220128155537","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background</i>:</b> Next-generation sequencing (NGS) technologies are being continuously used for high-throughput sequencing data generation that requires easy-to-use GUI-based data analysis software. These kinds of software could be used in-parallel with sequencing for the automatic data analysis. At present, very few software are available for use and most of them are commercial, thus creating a gap between data generation and data analysis. <b><i>Methods</i>:</b> GAAP is developed on the NodeJS platform that uses HTML, JavaScript as the front-end for communication with users. We have implemented FastQC and trimmomatic tool for quality checking and control. Velvet and Prodigal are integrated for genome assembly and gene prediction. The annotation will be done with the help of remote NCBI Blast and IPR-Scan. In the back- end, we have used PERL and JavaScript for the processing of data. To evaluate the performance of GAAP, we have assembled a viral (SRR11621811), bacterial (SRR17153353) and human genome (SRR16845439). <b><i>Results</i>:</b> We have used GAAP software to assemble, and annotate a COVID-19 genome on a desktop computer that resulted in a single contig of 27994bp with 99.57% reference genome coverage. This assembly predicted 11 genes, of which 10 were annotated using annotation module of GAAP. We have also assembled a bacterial and human genome 138 and 194281 contigs with N50 value 100399 and 610, respectively. <b><i>Conclusion</i>:</b> In this study, we have developed freely available, platform-independent genome assembly and annotation (GAAP) software (www.deepaklab.com/gaap). The software itself acts as a complete data analysis package with quality check, quality control, <i>de-novo</i> genome assembly, gene prediction and annotation (Blast, PFAM, GO-Term, pathway and enzyme mapping) modules.</p>","PeriodicalId":10803,"journal":{"name":"Current Genomics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e7/4f/CG-23-77.PMC9878834.pdf","citationCount":"2","resultStr":"{\"title\":\"GAAP: A GUI-based Genome Assembly and Annotation Package.\",\"authors\":\"Deepak Singla, Inderjit Singh Yadav\",\"doi\":\"10.2174/1389202923666220128155537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Background</i>:</b> Next-generation sequencing (NGS) technologies are being continuously used for high-throughput sequencing data generation that requires easy-to-use GUI-based data analysis software. These kinds of software could be used in-parallel with sequencing for the automatic data analysis. At present, very few software are available for use and most of them are commercial, thus creating a gap between data generation and data analysis. <b><i>Methods</i>:</b> GAAP is developed on the NodeJS platform that uses HTML, JavaScript as the front-end for communication with users. We have implemented FastQC and trimmomatic tool for quality checking and control. Velvet and Prodigal are integrated for genome assembly and gene prediction. The annotation will be done with the help of remote NCBI Blast and IPR-Scan. In the back- end, we have used PERL and JavaScript for the processing of data. To evaluate the performance of GAAP, we have assembled a viral (SRR11621811), bacterial (SRR17153353) and human genome (SRR16845439). <b><i>Results</i>:</b> We have used GAAP software to assemble, and annotate a COVID-19 genome on a desktop computer that resulted in a single contig of 27994bp with 99.57% reference genome coverage. This assembly predicted 11 genes, of which 10 were annotated using annotation module of GAAP. We have also assembled a bacterial and human genome 138 and 194281 contigs with N50 value 100399 and 610, respectively. <b><i>Conclusion</i>:</b> In this study, we have developed freely available, platform-independent genome assembly and annotation (GAAP) software (www.deepaklab.com/gaap). The software itself acts as a complete data analysis package with quality check, quality control, <i>de-novo</i> genome assembly, gene prediction and annotation (Blast, PFAM, GO-Term, pathway and enzyme mapping) modules.</p>\",\"PeriodicalId\":10803,\"journal\":{\"name\":\"Current Genomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e7/4f/CG-23-77.PMC9878834.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/1389202923666220128155537\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1389202923666220128155537","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
GAAP: A GUI-based Genome Assembly and Annotation Package.
Background: Next-generation sequencing (NGS) technologies are being continuously used for high-throughput sequencing data generation that requires easy-to-use GUI-based data analysis software. These kinds of software could be used in-parallel with sequencing for the automatic data analysis. At present, very few software are available for use and most of them are commercial, thus creating a gap between data generation and data analysis. Methods: GAAP is developed on the NodeJS platform that uses HTML, JavaScript as the front-end for communication with users. We have implemented FastQC and trimmomatic tool for quality checking and control. Velvet and Prodigal are integrated for genome assembly and gene prediction. The annotation will be done with the help of remote NCBI Blast and IPR-Scan. In the back- end, we have used PERL and JavaScript for the processing of data. To evaluate the performance of GAAP, we have assembled a viral (SRR11621811), bacterial (SRR17153353) and human genome (SRR16845439). Results: We have used GAAP software to assemble, and annotate a COVID-19 genome on a desktop computer that resulted in a single contig of 27994bp with 99.57% reference genome coverage. This assembly predicted 11 genes, of which 10 were annotated using annotation module of GAAP. We have also assembled a bacterial and human genome 138 and 194281 contigs with N50 value 100399 and 610, respectively. Conclusion: In this study, we have developed freely available, platform-independent genome assembly and annotation (GAAP) software (www.deepaklab.com/gaap). The software itself acts as a complete data analysis package with quality check, quality control, de-novo genome assembly, gene prediction and annotation (Blast, PFAM, GO-Term, pathway and enzyme mapping) modules.
期刊介绍:
Current Genomics is a peer-reviewed journal that provides essential reading about the latest and most important developments in genome science and related fields of research. Systems biology, systems modeling, machine learning, network inference, bioinformatics, computational biology, epigenetics, single cell genomics, extracellular vesicles, quantitative biology, and synthetic biology for the study of evolution, development, maintenance, aging and that of human health, human diseases, clinical genomics and precision medicine are topics of particular interest. The journal covers plant genomics. The journal will not consider articles dealing with breeding and livestock.
Current Genomics publishes three types of articles including:
i) Research papers from internationally-recognized experts reporting on new and original data generated at the genome scale level. Position papers dealing with new or challenging methodological approaches, whether experimental or mathematical, are greatly welcome in this section.
ii) Authoritative and comprehensive full-length or mini reviews from widely recognized experts, covering the latest developments in genome science and related fields of research such as systems biology, statistics and machine learning, quantitative biology, and precision medicine. Proposals for mini-hot topics (2-3 review papers) and full hot topics (6-8 review papers) guest edited by internationally-recognized experts are welcome in this section. Hot topic proposals should not contain original data and they should contain articles originating from at least 2 different countries.
iii) Opinion papers from internationally recognized experts addressing contemporary questions and issues in the field of genome science and systems biology and basic and clinical research practices.