{"title":"评估癌症和生物适形放疗的功能成像:过去的历史和现在的观点。","authors":"Jean LUMBROSO","doi":"10.1016/j.lpm.2022.104124","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Over the past twenty years, nuclear medicine has enhanced the role of functional imaging in cancerology. A major milestone was achieved in the early 2000s with widespread availability of the positron emitter tracer 18F- </span>deoxyglucose<span> (FDG) and the introduction of hybrid imagers, i.e. positron imagers coupled with an X CT, providing anatomical landmarks and potently contributing to attenuation and scatter correction of the images. Other technical advances have progressively increased the quality of positron images. To date, the most widely used tracer remains FDG, which is highly beneficial in terms of sensitivity and specificity in detection of tumor sites, also providing biological information on tumors and early evaluation of treatment response for most cancers. Other highly specific tracers have been developed and are now routinely used for </span></span>pheochromocytoma<span> and paraganglioma<span>, neuroendocrine tumors, and </span></span></span>prostate cancer.</p><p><span>Biological Radiotherapy has two aspects: Internal radiotherapy consisting in administration of a tumor-specific molecule radiolabeled with an isotope delivering an adequate radiation dose to the targeted tumor sites (on the model of thyroid cancer treated with radioiodine) and </span>external radiotherapy designed to determine tumor volume, assess response and to dose radiation according to the tumor characteristics shown by functional imaging.</p></div>","PeriodicalId":20530,"journal":{"name":"Presse Medicale","volume":"51 2","pages":"Article 104124"},"PeriodicalIF":3.2000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Functional imaging for evaluation of cancers and biologically conformal radiotherapy: Past-history and present-day perspectives.\",\"authors\":\"Jean LUMBROSO\",\"doi\":\"10.1016/j.lpm.2022.104124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>Over the past twenty years, nuclear medicine has enhanced the role of functional imaging in cancerology. A major milestone was achieved in the early 2000s with widespread availability of the positron emitter tracer 18F- </span>deoxyglucose<span> (FDG) and the introduction of hybrid imagers, i.e. positron imagers coupled with an X CT, providing anatomical landmarks and potently contributing to attenuation and scatter correction of the images. Other technical advances have progressively increased the quality of positron images. To date, the most widely used tracer remains FDG, which is highly beneficial in terms of sensitivity and specificity in detection of tumor sites, also providing biological information on tumors and early evaluation of treatment response for most cancers. Other highly specific tracers have been developed and are now routinely used for </span></span>pheochromocytoma<span> and paraganglioma<span>, neuroendocrine tumors, and </span></span></span>prostate cancer.</p><p><span>Biological Radiotherapy has two aspects: Internal radiotherapy consisting in administration of a tumor-specific molecule radiolabeled with an isotope delivering an adequate radiation dose to the targeted tumor sites (on the model of thyroid cancer treated with radioiodine) and </span>external radiotherapy designed to determine tumor volume, assess response and to dose radiation according to the tumor characteristics shown by functional imaging.</p></div>\",\"PeriodicalId\":20530,\"journal\":{\"name\":\"Presse Medicale\",\"volume\":\"51 2\",\"pages\":\"Article 104124\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Presse Medicale\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0755498222000173\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Presse Medicale","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0755498222000173","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Functional imaging for evaluation of cancers and biologically conformal radiotherapy: Past-history and present-day perspectives.
Over the past twenty years, nuclear medicine has enhanced the role of functional imaging in cancerology. A major milestone was achieved in the early 2000s with widespread availability of the positron emitter tracer 18F- deoxyglucose (FDG) and the introduction of hybrid imagers, i.e. positron imagers coupled with an X CT, providing anatomical landmarks and potently contributing to attenuation and scatter correction of the images. Other technical advances have progressively increased the quality of positron images. To date, the most widely used tracer remains FDG, which is highly beneficial in terms of sensitivity and specificity in detection of tumor sites, also providing biological information on tumors and early evaluation of treatment response for most cancers. Other highly specific tracers have been developed and are now routinely used for pheochromocytoma and paraganglioma, neuroendocrine tumors, and prostate cancer.
Biological Radiotherapy has two aspects: Internal radiotherapy consisting in administration of a tumor-specific molecule radiolabeled with an isotope delivering an adequate radiation dose to the targeted tumor sites (on the model of thyroid cancer treated with radioiodine) and external radiotherapy designed to determine tumor volume, assess response and to dose radiation according to the tumor characteristics shown by functional imaging.
期刊介绍:
Seule revue médicale "généraliste" de haut niveau, La Presse Médicale est l''équivalent francophone des grandes revues anglosaxonnes de publication et de formation continue.
A raison d''un numéro par mois, La Presse Médicale vous offre une double approche éditoriale :
- des publications originales (articles originaux, revues systématiques, cas cliniques) soumises à double expertise, portant sur les avancées médicales les plus récentes ;
- une partie orientée vers la FMC, vous propose une mise à jour permanente et de haut niveau de vos connaissances, sous forme de dossiers thématiques et de mises au point dans les principales spécialités médicales, pour vous aider à optimiser votre formation.