{"title":"五个生态区啮齿动物(哺乳目:啮齿目)上新北和古北跳蚤群落的热生态位划分和物候特征。","authors":"Robert L Bossard","doi":"10.52707/1081-1710-47.2.217","DOIUrl":null,"url":null,"abstract":"<p><p>Seasonality of fleas (Siphonaptera) may be due to species competition, prompting the idea that flea species partition temperature, along with correlated variables such as moisture (thermal-niche partitioning hypothesis). I compared the fleas of five rodent-flea communities described from the literature for thermal-niche optima by fitting non-linear LRF (Lobry-Rosso-Flandrois) curves to examine whether flea species in a community show distinct, partitioned thermal niches. LRF curves estimate physiological parameters of temperature minimum, optimum, maximum, and maximum abundance, and facilitate comparison between species by summarizing seasonal data. Flea-communities were on Nearctic Southern flying squirrel (<i>Glaucomys volans volans</i>), Richardson's ground-squirrel (<i>Urocitellus richardsonii</i>), North American deer-mouse (<i>Peromyscus maniculatus</i>), and Palearctic Midday jird (<i>Meriones meridianus</i>), and Wagner's gerbil (<i>Dipodillus dasyurus</i>). Flea communities appeared to show seasonality consistent with thermal-niche partitioning. Several flea families and genera had characteristic thermal niches: Ceratophyllidae had broad tolerance to extreme temperature, Leptopsyllidae (one species in this study) to cold, and Pulicidae to hot. In contrast, at the local, species level, climatic speciation could be significant in flea diversification. Non-competition hypotheses (environmental filtering, neutrality) require testing, too. Thermal-niche partitioning may increase flea species richness on hosts and could occur in other insect and plant communities. Implications for biodiversity conservation and disease ecology under global warming are wide-ranging.</p>","PeriodicalId":49961,"journal":{"name":"Journal of Vector Ecology","volume":"47 2","pages":"217-226"},"PeriodicalIF":1.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Thermal niche partitioning and phenology of Nearctic and Palearctic flea (Siphonaptera) communities on rodents (Mammalia: Rodentia) from five ecoregions.\",\"authors\":\"Robert L Bossard\",\"doi\":\"10.52707/1081-1710-47.2.217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Seasonality of fleas (Siphonaptera) may be due to species competition, prompting the idea that flea species partition temperature, along with correlated variables such as moisture (thermal-niche partitioning hypothesis). I compared the fleas of five rodent-flea communities described from the literature for thermal-niche optima by fitting non-linear LRF (Lobry-Rosso-Flandrois) curves to examine whether flea species in a community show distinct, partitioned thermal niches. LRF curves estimate physiological parameters of temperature minimum, optimum, maximum, and maximum abundance, and facilitate comparison between species by summarizing seasonal data. Flea-communities were on Nearctic Southern flying squirrel (<i>Glaucomys volans volans</i>), Richardson's ground-squirrel (<i>Urocitellus richardsonii</i>), North American deer-mouse (<i>Peromyscus maniculatus</i>), and Palearctic Midday jird (<i>Meriones meridianus</i>), and Wagner's gerbil (<i>Dipodillus dasyurus</i>). Flea communities appeared to show seasonality consistent with thermal-niche partitioning. Several flea families and genera had characteristic thermal niches: Ceratophyllidae had broad tolerance to extreme temperature, Leptopsyllidae (one species in this study) to cold, and Pulicidae to hot. In contrast, at the local, species level, climatic speciation could be significant in flea diversification. Non-competition hypotheses (environmental filtering, neutrality) require testing, too. Thermal-niche partitioning may increase flea species richness on hosts and could occur in other insect and plant communities. Implications for biodiversity conservation and disease ecology under global warming are wide-ranging.</p>\",\"PeriodicalId\":49961,\"journal\":{\"name\":\"Journal of Vector Ecology\",\"volume\":\"47 2\",\"pages\":\"217-226\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vector Ecology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.52707/1081-1710-47.2.217\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vector Ecology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.52707/1081-1710-47.2.217","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Thermal niche partitioning and phenology of Nearctic and Palearctic flea (Siphonaptera) communities on rodents (Mammalia: Rodentia) from five ecoregions.
Seasonality of fleas (Siphonaptera) may be due to species competition, prompting the idea that flea species partition temperature, along with correlated variables such as moisture (thermal-niche partitioning hypothesis). I compared the fleas of five rodent-flea communities described from the literature for thermal-niche optima by fitting non-linear LRF (Lobry-Rosso-Flandrois) curves to examine whether flea species in a community show distinct, partitioned thermal niches. LRF curves estimate physiological parameters of temperature minimum, optimum, maximum, and maximum abundance, and facilitate comparison between species by summarizing seasonal data. Flea-communities were on Nearctic Southern flying squirrel (Glaucomys volans volans), Richardson's ground-squirrel (Urocitellus richardsonii), North American deer-mouse (Peromyscus maniculatus), and Palearctic Midday jird (Meriones meridianus), and Wagner's gerbil (Dipodillus dasyurus). Flea communities appeared to show seasonality consistent with thermal-niche partitioning. Several flea families and genera had characteristic thermal niches: Ceratophyllidae had broad tolerance to extreme temperature, Leptopsyllidae (one species in this study) to cold, and Pulicidae to hot. In contrast, at the local, species level, climatic speciation could be significant in flea diversification. Non-competition hypotheses (environmental filtering, neutrality) require testing, too. Thermal-niche partitioning may increase flea species richness on hosts and could occur in other insect and plant communities. Implications for biodiversity conservation and disease ecology under global warming are wide-ranging.
期刊介绍:
The Journal of Vector Ecology is an international journal published by the Society for Vector Ecology. It is concerned with all aspects of the biology, ecology, and control of arthropod and vertebrate vectors and the interrelationships between the vectors and the agents of disease that they transmit. The journal publishes original research articles and scientific notes, as well as comprehensive reviews of vector biology based on presentations at Society meetings. All papers are reviewed by at least two qualified scientists who recommend their suitability for publication. Acceptance of manuscripts is based on their scientific merit and is the final decision of the editor, but these decisions may be appealed to the editorial board. The journal began publishing in 1974 and now publishes on-line only.