Eduardo Morais de Castro, Leonardo Vinícius Barbosa, Aline Simoneti Fonseca, Seigo Nagashima, Caroline Busatta Vaz de Paula, Rafaela Zeni, Letícia Arianne Panini do Carmo, Luciane R Cavalli, Luiz Fernando Bleggi Torres, Andrea Senff Ribeiro, Lucia de Noronha, Cleber Machado-Souza
{"title":"儿童星形细胞瘤中TPT1通路的多态性。","authors":"Eduardo Morais de Castro, Leonardo Vinícius Barbosa, Aline Simoneti Fonseca, Seigo Nagashima, Caroline Busatta Vaz de Paula, Rafaela Zeni, Letícia Arianne Panini do Carmo, Luciane R Cavalli, Luiz Fernando Bleggi Torres, Andrea Senff Ribeiro, Lucia de Noronha, Cleber Machado-Souza","doi":"10.1177/17590914231153481","DOIUrl":null,"url":null,"abstract":"<p><p>Central nervous system tumors, especially astrocytomas, are the solid neoplasms with the highest incidence and mortality rates in childhood. The diagnosis is based on histopathological characteristics, but molecular methods have been increasingly used. Translationally controlled tumor protein (TCTP) protein, encoded by the tumor protein, translationally controlled 1 (<i>TPT1</i>) gene, is a multifunctional protein with an important physiological role in the cell cycle. Expression of this protein has been associated with several neoplasms, including astrocytomas in adults. However, the role of this protein in pediatric astrocytomas is largely unknown. We aim to evaluate in cases of pediatric astrocytomas, the frequency of polymorphisms in the <i>TPT1</i> gene and other genes associated with its molecular pathways, such as <i>MTOR</i>, <i>MDM2</i>, <i>TP53</i>, and <i>CDKN1A</i>, correlating it with protein expression and clinical variables, in formalin-fixed, paraffin-embedded (FFPE) samples. These samples were submitted to genotyping and immunohistochemistry analyses. The most revealing results refer to the <i>MDM2</i> gene, rs117039649 [G/C], in which C polymorphic allele was observed only in the glioblastomas (<i>p </i>= .028). The <i>CDKN1A</i> gene, rs3176334 [T/C] presented a homozygous polymorphic genotype only in high-grade astrocytomas, when infiltrating tumors were compared (<i>p </i>= .039). The immunohistochemical expression of cytoplasmic MDM2 correlated with better survival rates in patients with glioblastoma (<i>p = </i>.018). The presence of polymorphisms in the <i>MDM2</i> and <i>CDKN1A</i> genes, as well as a specific correlation between MDM2 expression, suggests a likely association with risk in pediatric astrocytomas. This study sought the probable role involved in the TCTP pathway, and associated proteins, in the tumorigenesis of pediatric astrocytomas, and some could have potential impact as prognostic markers in these patients.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/65/32/10.1177_17590914231153481.PMC9903018.pdf","citationCount":"0","resultStr":"{\"title\":\"Polymorphisms in <i>TPT1</i> Pathways in Pediatric Astrocytomas.\",\"authors\":\"Eduardo Morais de Castro, Leonardo Vinícius Barbosa, Aline Simoneti Fonseca, Seigo Nagashima, Caroline Busatta Vaz de Paula, Rafaela Zeni, Letícia Arianne Panini do Carmo, Luciane R Cavalli, Luiz Fernando Bleggi Torres, Andrea Senff Ribeiro, Lucia de Noronha, Cleber Machado-Souza\",\"doi\":\"10.1177/17590914231153481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Central nervous system tumors, especially astrocytomas, are the solid neoplasms with the highest incidence and mortality rates in childhood. The diagnosis is based on histopathological characteristics, but molecular methods have been increasingly used. Translationally controlled tumor protein (TCTP) protein, encoded by the tumor protein, translationally controlled 1 (<i>TPT1</i>) gene, is a multifunctional protein with an important physiological role in the cell cycle. Expression of this protein has been associated with several neoplasms, including astrocytomas in adults. However, the role of this protein in pediatric astrocytomas is largely unknown. We aim to evaluate in cases of pediatric astrocytomas, the frequency of polymorphisms in the <i>TPT1</i> gene and other genes associated with its molecular pathways, such as <i>MTOR</i>, <i>MDM2</i>, <i>TP53</i>, and <i>CDKN1A</i>, correlating it with protein expression and clinical variables, in formalin-fixed, paraffin-embedded (FFPE) samples. These samples were submitted to genotyping and immunohistochemistry analyses. The most revealing results refer to the <i>MDM2</i> gene, rs117039649 [G/C], in which C polymorphic allele was observed only in the glioblastomas (<i>p </i>= .028). The <i>CDKN1A</i> gene, rs3176334 [T/C] presented a homozygous polymorphic genotype only in high-grade astrocytomas, when infiltrating tumors were compared (<i>p </i>= .039). The immunohistochemical expression of cytoplasmic MDM2 correlated with better survival rates in patients with glioblastoma (<i>p = </i>.018). The presence of polymorphisms in the <i>MDM2</i> and <i>CDKN1A</i> genes, as well as a specific correlation between MDM2 expression, suggests a likely association with risk in pediatric astrocytomas. This study sought the probable role involved in the TCTP pathway, and associated proteins, in the tumorigenesis of pediatric astrocytomas, and some could have potential impact as prognostic markers in these patients.</p>\",\"PeriodicalId\":8616,\"journal\":{\"name\":\"ASN NEURO\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/65/32/10.1177_17590914231153481.PMC9903018.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASN NEURO\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/17590914231153481\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASN NEURO","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17590914231153481","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Polymorphisms in TPT1 Pathways in Pediatric Astrocytomas.
Central nervous system tumors, especially astrocytomas, are the solid neoplasms with the highest incidence and mortality rates in childhood. The diagnosis is based on histopathological characteristics, but molecular methods have been increasingly used. Translationally controlled tumor protein (TCTP) protein, encoded by the tumor protein, translationally controlled 1 (TPT1) gene, is a multifunctional protein with an important physiological role in the cell cycle. Expression of this protein has been associated with several neoplasms, including astrocytomas in adults. However, the role of this protein in pediatric astrocytomas is largely unknown. We aim to evaluate in cases of pediatric astrocytomas, the frequency of polymorphisms in the TPT1 gene and other genes associated with its molecular pathways, such as MTOR, MDM2, TP53, and CDKN1A, correlating it with protein expression and clinical variables, in formalin-fixed, paraffin-embedded (FFPE) samples. These samples were submitted to genotyping and immunohistochemistry analyses. The most revealing results refer to the MDM2 gene, rs117039649 [G/C], in which C polymorphic allele was observed only in the glioblastomas (p = .028). The CDKN1A gene, rs3176334 [T/C] presented a homozygous polymorphic genotype only in high-grade astrocytomas, when infiltrating tumors were compared (p = .039). The immunohistochemical expression of cytoplasmic MDM2 correlated with better survival rates in patients with glioblastoma (p = .018). The presence of polymorphisms in the MDM2 and CDKN1A genes, as well as a specific correlation between MDM2 expression, suggests a likely association with risk in pediatric astrocytomas. This study sought the probable role involved in the TCTP pathway, and associated proteins, in the tumorigenesis of pediatric astrocytomas, and some could have potential impact as prognostic markers in these patients.
期刊介绍:
ASN NEURO is an open access, peer-reviewed journal uniquely positioned to provide investigators with the most recent advances across the breadth of the cellular and molecular neurosciences. The official journal of the American Society for Neurochemistry, ASN NEURO is dedicated to the promotion, support, and facilitation of communication among cellular and molecular neuroscientists of all specializations.