{"title":"Aztreonam-avibactam:一种针对碳青霉烯耐药肠杆菌的选择。","authors":"Shikai Wu, Zhiyong Zong","doi":"10.1093/pcmedi/pbac029","DOIUrl":null,"url":null,"abstract":"The Enterobacterales are an order of Gram-negative bacteria comprising a few major human pathogens such as Escherichia coli and Klebsiella pneumoniae . However, carbapenem-resistant En-terobacterales (CRE) has risen as an urgent threat for human health, leading to high mortality with very limited antimicrobial options. The main mechanism mediating resistance to β - lactams including carbapenems in the Enterobacterales is production of β -lactamases, which are two categories of enzymes capable of hydrolyzing β -lactams: serine β -lactamases and metallo-β -lactamases (MBLs). Avibactam (AVI) is a non-β -lactam β - lactamase inhibitor able to inhibit almost all serine β -lactamases but not MBLs.AVI in combination with ceftazidime (CAZ) has been approved for treating infections caused by CRE but CAZ-AVI has no activities against those producing MBLs. Currently, no MBL inhibitors have been approved for clinical use. Aztreonam (ATM), a monobactam, is stable to the hydrolysis of MBLs,and AVI can protect ATM from the inactivation by serine β -lactamases. The ATM- AVIcombinationmaythereforebeaviablechoiceagainstCREpro-ducing","PeriodicalId":33608,"journal":{"name":"Precision Clinical Medicine","volume":"5 4","pages":"pbac029"},"PeriodicalIF":5.1000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9745765/pdf/","citationCount":"0","resultStr":"{\"title\":\"Aztreonam-avibactam: an option against carbapenem-resistant Enterobacterales with emerging resistance.\",\"authors\":\"Shikai Wu, Zhiyong Zong\",\"doi\":\"10.1093/pcmedi/pbac029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Enterobacterales are an order of Gram-negative bacteria comprising a few major human pathogens such as Escherichia coli and Klebsiella pneumoniae . However, carbapenem-resistant En-terobacterales (CRE) has risen as an urgent threat for human health, leading to high mortality with very limited antimicrobial options. The main mechanism mediating resistance to β - lactams including carbapenems in the Enterobacterales is production of β -lactamases, which are two categories of enzymes capable of hydrolyzing β -lactams: serine β -lactamases and metallo-β -lactamases (MBLs). Avibactam (AVI) is a non-β -lactam β - lactamase inhibitor able to inhibit almost all serine β -lactamases but not MBLs.AVI in combination with ceftazidime (CAZ) has been approved for treating infections caused by CRE but CAZ-AVI has no activities against those producing MBLs. Currently, no MBL inhibitors have been approved for clinical use. Aztreonam (ATM), a monobactam, is stable to the hydrolysis of MBLs,and AVI can protect ATM from the inactivation by serine β -lactamases. The ATM- AVIcombinationmaythereforebeaviablechoiceagainstCREpro-ducing\",\"PeriodicalId\":33608,\"journal\":{\"name\":\"Precision Clinical Medicine\",\"volume\":\"5 4\",\"pages\":\"pbac029\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9745765/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Clinical Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/pcmedi/pbac029\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Clinical Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/pcmedi/pbac029","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Aztreonam-avibactam: an option against carbapenem-resistant Enterobacterales with emerging resistance.
The Enterobacterales are an order of Gram-negative bacteria comprising a few major human pathogens such as Escherichia coli and Klebsiella pneumoniae . However, carbapenem-resistant En-terobacterales (CRE) has risen as an urgent threat for human health, leading to high mortality with very limited antimicrobial options. The main mechanism mediating resistance to β - lactams including carbapenems in the Enterobacterales is production of β -lactamases, which are two categories of enzymes capable of hydrolyzing β -lactams: serine β -lactamases and metallo-β -lactamases (MBLs). Avibactam (AVI) is a non-β -lactam β - lactamase inhibitor able to inhibit almost all serine β -lactamases but not MBLs.AVI in combination with ceftazidime (CAZ) has been approved for treating infections caused by CRE but CAZ-AVI has no activities against those producing MBLs. Currently, no MBL inhibitors have been approved for clinical use. Aztreonam (ATM), a monobactam, is stable to the hydrolysis of MBLs,and AVI can protect ATM from the inactivation by serine β -lactamases. The ATM- AVIcombinationmaythereforebeaviablechoiceagainstCREpro-ducing
期刊介绍:
Precision Clinical Medicine (PCM) is an international, peer-reviewed, open access journal that provides timely publication of original research articles, case reports, reviews, editorials, and perspectives across the spectrum of precision medicine. The journal's mission is to deliver new theories, methods, and evidence that enhance disease diagnosis, treatment, prevention, and prognosis, thereby establishing a vital communication platform for clinicians and researchers that has the potential to transform medical practice. PCM encompasses all facets of precision medicine, which involves personalized approaches to diagnosis, treatment, and prevention, tailored to individual patients or patient subgroups based on their unique genetic, phenotypic, or psychosocial profiles. The clinical conditions addressed by the journal include a wide range of areas such as cancer, infectious diseases, inherited diseases, complex diseases, and rare diseases.