W H Dawe, D R Kapczynski, E G Linnemann, V R Gauthiersloan, H S Sellers
{"title":"禽正呼肠孤病毒活疫苗和灭活疫苗免疫后免疫应答分析及Sigma C蛋白抗体表位鉴定","authors":"W H Dawe, D R Kapczynski, E G Linnemann, V R Gauthiersloan, H S Sellers","doi":"10.1637/aviandiseases-D-22-99992","DOIUrl":null,"url":null,"abstract":"<p><p>Avian orthoreoviruses are causative agents of tenosynovitis and viral arthritis in both chickens and turkeys. Current commercial reovirus vaccines do not protect against disease caused by emerging variants. Custom-made inactivated reovirus vaccines are commonly utilized to help protect commercial poultry against disease. Antibody epitopes located on the viral attachment protein, σC, involved in virus neutralization, have not been clearly identified. In this study, the S1133 vaccine strain (Genetic Cluster 1 [GC1], a GC1 field isolate (117816), and a GC5 field isolate (94826) were determined to be genetically and serologically unrelated. In addition, chickens were vaccinated with either a commercial S1133 vaccine, 117816 GC1, or 94826 GC5, and sera were used in peptide microarrays to identify linear B-cell epitopes within the σC protein. Specific-pathogen-free (SPF) chickens were vaccinated twice with either: 1) live and live, 2) inactivated and inactivated, or 3) a combination of live and inactivated vaccines. Epitope mapping was performed on individual serum samples from birds in each group using S1133, 117816, and 94826 σC sequences translated into an overlapping peptides and spotted onto microarray chips. Vaccination with a combination of live and inactivated viruses resulted in a greater number of B-cell binding sites on the outer-capsid domains of σC for 117816 and 94826, but not for S1133. In contrast, the S1133-vaccinated birds demonstrated fewer epitopes, and those epitopes were located in the stalk region of the protein. However, within each of the vaccinated groups, the highest virus-neutralization titers were observed in the live/inactivated groups. This study demonstrates differences in antibody binding sites within σC between genetically and antigenically distinct reoviruses and provides initial antigenic characterization of avian orthoreoviruses and insight into the inability of vaccine-induced antibodies to provide adequate protection against variant reovirus-induced disease.</p>","PeriodicalId":8667,"journal":{"name":"Avian Diseases","volume":"66 4","pages":"465-478"},"PeriodicalIF":1.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the Immune Response and Identification of Antibody Epitopes Against the Sigma C Protein of Avian Orthoreovirus Following Immunization with Live or Inactivated Vaccines.\",\"authors\":\"W H Dawe, D R Kapczynski, E G Linnemann, V R Gauthiersloan, H S Sellers\",\"doi\":\"10.1637/aviandiseases-D-22-99992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Avian orthoreoviruses are causative agents of tenosynovitis and viral arthritis in both chickens and turkeys. Current commercial reovirus vaccines do not protect against disease caused by emerging variants. Custom-made inactivated reovirus vaccines are commonly utilized to help protect commercial poultry against disease. Antibody epitopes located on the viral attachment protein, σC, involved in virus neutralization, have not been clearly identified. In this study, the S1133 vaccine strain (Genetic Cluster 1 [GC1], a GC1 field isolate (117816), and a GC5 field isolate (94826) were determined to be genetically and serologically unrelated. In addition, chickens were vaccinated with either a commercial S1133 vaccine, 117816 GC1, or 94826 GC5, and sera were used in peptide microarrays to identify linear B-cell epitopes within the σC protein. Specific-pathogen-free (SPF) chickens were vaccinated twice with either: 1) live and live, 2) inactivated and inactivated, or 3) a combination of live and inactivated vaccines. Epitope mapping was performed on individual serum samples from birds in each group using S1133, 117816, and 94826 σC sequences translated into an overlapping peptides and spotted onto microarray chips. Vaccination with a combination of live and inactivated viruses resulted in a greater number of B-cell binding sites on the outer-capsid domains of σC for 117816 and 94826, but not for S1133. In contrast, the S1133-vaccinated birds demonstrated fewer epitopes, and those epitopes were located in the stalk region of the protein. However, within each of the vaccinated groups, the highest virus-neutralization titers were observed in the live/inactivated groups. This study demonstrates differences in antibody binding sites within σC between genetically and antigenically distinct reoviruses and provides initial antigenic characterization of avian orthoreoviruses and insight into the inability of vaccine-induced antibodies to provide adequate protection against variant reovirus-induced disease.</p>\",\"PeriodicalId\":8667,\"journal\":{\"name\":\"Avian Diseases\",\"volume\":\"66 4\",\"pages\":\"465-478\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Avian Diseases\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1637/aviandiseases-D-22-99992\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Avian Diseases","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1637/aviandiseases-D-22-99992","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Analysis of the Immune Response and Identification of Antibody Epitopes Against the Sigma C Protein of Avian Orthoreovirus Following Immunization with Live or Inactivated Vaccines.
Avian orthoreoviruses are causative agents of tenosynovitis and viral arthritis in both chickens and turkeys. Current commercial reovirus vaccines do not protect against disease caused by emerging variants. Custom-made inactivated reovirus vaccines are commonly utilized to help protect commercial poultry against disease. Antibody epitopes located on the viral attachment protein, σC, involved in virus neutralization, have not been clearly identified. In this study, the S1133 vaccine strain (Genetic Cluster 1 [GC1], a GC1 field isolate (117816), and a GC5 field isolate (94826) were determined to be genetically and serologically unrelated. In addition, chickens were vaccinated with either a commercial S1133 vaccine, 117816 GC1, or 94826 GC5, and sera were used in peptide microarrays to identify linear B-cell epitopes within the σC protein. Specific-pathogen-free (SPF) chickens were vaccinated twice with either: 1) live and live, 2) inactivated and inactivated, or 3) a combination of live and inactivated vaccines. Epitope mapping was performed on individual serum samples from birds in each group using S1133, 117816, and 94826 σC sequences translated into an overlapping peptides and spotted onto microarray chips. Vaccination with a combination of live and inactivated viruses resulted in a greater number of B-cell binding sites on the outer-capsid domains of σC for 117816 and 94826, but not for S1133. In contrast, the S1133-vaccinated birds demonstrated fewer epitopes, and those epitopes were located in the stalk region of the protein. However, within each of the vaccinated groups, the highest virus-neutralization titers were observed in the live/inactivated groups. This study demonstrates differences in antibody binding sites within σC between genetically and antigenically distinct reoviruses and provides initial antigenic characterization of avian orthoreoviruses and insight into the inability of vaccine-induced antibodies to provide adequate protection against variant reovirus-induced disease.
期刊介绍:
Avian Diseases is an international journal dedicated to publishing original basic or clinical research of the highest quality from various disciplines including microbiology, immunology, pathology and epidemiology. Papers on avian diseases relevant to etiology, pathogenesis, diagnosis, treatment, and control are accepted. Manuscripts dealing with avian species other than poultry will be considered only if the subject is relevant to poultry health.