Nathalie Linn Anikken Holme, Ilias Zilakos, Maja Elstad, Maria Skytioti
{"title":"健康人脑血流对心肺振荡的反应","authors":"Nathalie Linn Anikken Holme, Ilias Zilakos, Maja Elstad, Maria Skytioti","doi":"10.1016/j.autneu.2022.103069","DOIUrl":null,"url":null,"abstract":"<div><p><span>Dynamic cerebral autoregulation (CA) characterizes the cerebral blood flow (CBF) response to abrupt changes in </span>arterial blood pressure (ABP). CA operates at frequencies below 0.15 Hz. ABP regulation and probably CA are modified by autonomic nervous activity. We investigated the CBF response and CA dynamics to mild increase in sympathetic activity.</p><p>Twelve healthy volunteers underwent oscillatory lower body negative pressure (oLBNP), which induced respiratory-related ABP oscillations at an average of 0.22 Hz. We recorded blood velocity in the internal carotid artery<span> (ICA) by Doppler ultrasound and ABP. We quantified variability and peak wavelet power of ABP and ICA blood velocity by wavelet analysis at low frequency (LF, 0.05–0.15 Hz) and Mayer waves (0.08–0.12 Hz), respectively. CA was quantified by calculation of the wavelet synchronization gamma index for the pair ABP–ICA blood velocity in the LF and Mayer wave band.</span></p><p>oLBNP increased ABP peak wavelet power at the Mayer wave frequency. At the Mayer wave, ABP peak wavelet power increased by >70 % from rest to oLBNP (<em>p</em><span> < 0.05), while ICA blood flow velocity peak wavelet power was unchanged, and gamma index increased (from 0.49 to 0.69, </span><em>p</em> < 0.05). At LF, variability in both ABP and ICA blood velocity and gamma index were unchanged from rest to oLBNP.</p><p>Despite an increased gamma index at Mayer wave, ICA blood flow variability was unchanged during increased ABP variability. The increased synchronization during oLBNP did not cause less stable CBF or less active CA. Sympathetic activation seems to improve the mechanisms of CA.</p></div>","PeriodicalId":55410,"journal":{"name":"Autonomic Neuroscience-Basic & Clinical","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cerebral blood flow response to cardiorespiratory oscillations in healthy humans\",\"authors\":\"Nathalie Linn Anikken Holme, Ilias Zilakos, Maja Elstad, Maria Skytioti\",\"doi\":\"10.1016/j.autneu.2022.103069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Dynamic cerebral autoregulation (CA) characterizes the cerebral blood flow (CBF) response to abrupt changes in </span>arterial blood pressure (ABP). CA operates at frequencies below 0.15 Hz. ABP regulation and probably CA are modified by autonomic nervous activity. We investigated the CBF response and CA dynamics to mild increase in sympathetic activity.</p><p>Twelve healthy volunteers underwent oscillatory lower body negative pressure (oLBNP), which induced respiratory-related ABP oscillations at an average of 0.22 Hz. We recorded blood velocity in the internal carotid artery<span> (ICA) by Doppler ultrasound and ABP. We quantified variability and peak wavelet power of ABP and ICA blood velocity by wavelet analysis at low frequency (LF, 0.05–0.15 Hz) and Mayer waves (0.08–0.12 Hz), respectively. CA was quantified by calculation of the wavelet synchronization gamma index for the pair ABP–ICA blood velocity in the LF and Mayer wave band.</span></p><p>oLBNP increased ABP peak wavelet power at the Mayer wave frequency. At the Mayer wave, ABP peak wavelet power increased by >70 % from rest to oLBNP (<em>p</em><span> < 0.05), while ICA blood flow velocity peak wavelet power was unchanged, and gamma index increased (from 0.49 to 0.69, </span><em>p</em> < 0.05). At LF, variability in both ABP and ICA blood velocity and gamma index were unchanged from rest to oLBNP.</p><p>Despite an increased gamma index at Mayer wave, ICA blood flow variability was unchanged during increased ABP variability. The increased synchronization during oLBNP did not cause less stable CBF or less active CA. Sympathetic activation seems to improve the mechanisms of CA.</p></div>\",\"PeriodicalId\":55410,\"journal\":{\"name\":\"Autonomic Neuroscience-Basic & Clinical\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomic Neuroscience-Basic & Clinical\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S156607022200128X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomic Neuroscience-Basic & Clinical","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156607022200128X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Cerebral blood flow response to cardiorespiratory oscillations in healthy humans
Dynamic cerebral autoregulation (CA) characterizes the cerebral blood flow (CBF) response to abrupt changes in arterial blood pressure (ABP). CA operates at frequencies below 0.15 Hz. ABP regulation and probably CA are modified by autonomic nervous activity. We investigated the CBF response and CA dynamics to mild increase in sympathetic activity.
Twelve healthy volunteers underwent oscillatory lower body negative pressure (oLBNP), which induced respiratory-related ABP oscillations at an average of 0.22 Hz. We recorded blood velocity in the internal carotid artery (ICA) by Doppler ultrasound and ABP. We quantified variability and peak wavelet power of ABP and ICA blood velocity by wavelet analysis at low frequency (LF, 0.05–0.15 Hz) and Mayer waves (0.08–0.12 Hz), respectively. CA was quantified by calculation of the wavelet synchronization gamma index for the pair ABP–ICA blood velocity in the LF and Mayer wave band.
oLBNP increased ABP peak wavelet power at the Mayer wave frequency. At the Mayer wave, ABP peak wavelet power increased by >70 % from rest to oLBNP (p < 0.05), while ICA blood flow velocity peak wavelet power was unchanged, and gamma index increased (from 0.49 to 0.69, p < 0.05). At LF, variability in both ABP and ICA blood velocity and gamma index were unchanged from rest to oLBNP.
Despite an increased gamma index at Mayer wave, ICA blood flow variability was unchanged during increased ABP variability. The increased synchronization during oLBNP did not cause less stable CBF or less active CA. Sympathetic activation seems to improve the mechanisms of CA.
期刊介绍:
This is an international journal with broad coverage of all aspects of the autonomic nervous system in man and animals. The main areas of interest include the innervation of blood vessels and viscera, autonomic ganglia, efferent and afferent autonomic pathways, and autonomic nuclei and pathways in the central nervous system.
The Editors will consider papers that deal with any aspect of the autonomic nervous system, including structure, physiology, pharmacology, biochemistry, development, evolution, ageing, behavioural aspects, integrative role and influence on emotional and physical states of the body. Interdisciplinary studies will be encouraged. Studies dealing with human pathology will be also welcome.