病变选择性白蛋白ctla4ig作为一种安全有效的治疗胶原性关节炎的药物。

IF 5 3区 医学 Q2 IMMUNOLOGY Inflammation and Regeneration Pub Date : 2023-02-16 DOI:10.1186/s41232-023-00264-8
Fu-Yao Jiang, Yan-Zhu Zhang, Yuan-Hong Tai, Chien-Yu Chou, Yu-Ching Hsieh, Ya-Chi Chang, Hsiao-Chen Huang, Zhi-Qin Li, Yuan-Chin Hsieh, I-Ju Chen, Bo-Cheng Huang, Yu-Cheng Su, Wen-Wei Lin, Hsin-Chieh Lin, Jui-I Chao, Shyng-Shiou F Yuan, Yun-Ming Wang, Tian-Lu Cheng, Shey-Cherng Tzou
{"title":"病变选择性白蛋白ctla4ig作为一种安全有效的治疗胶原性关节炎的药物。","authors":"Fu-Yao Jiang,&nbsp;Yan-Zhu Zhang,&nbsp;Yuan-Hong Tai,&nbsp;Chien-Yu Chou,&nbsp;Yu-Ching Hsieh,&nbsp;Ya-Chi Chang,&nbsp;Hsiao-Chen Huang,&nbsp;Zhi-Qin Li,&nbsp;Yuan-Chin Hsieh,&nbsp;I-Ju Chen,&nbsp;Bo-Cheng Huang,&nbsp;Yu-Cheng Su,&nbsp;Wen-Wei Lin,&nbsp;Hsin-Chieh Lin,&nbsp;Jui-I Chao,&nbsp;Shyng-Shiou F Yuan,&nbsp;Yun-Ming Wang,&nbsp;Tian-Lu Cheng,&nbsp;Shey-Cherng Tzou","doi":"10.1186/s41232-023-00264-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>CTLA4Ig is a dimeric fusion protein of the extracellular domain of cytotoxic T-lymphocyte protein 4 (CTLA4) and an Fc (Ig) fragment of human IgG<sub>1</sub> that is approved for treating rheumatoid arthritis. However, CTLA4Ig may induce adverse effects. Developing a lesion-selective variant of CTLA4Ig may improve safety while maintaining the efficacy of the treatment.</p><p><strong>Methods: </strong>We linked albumin to the N-terminus of CTLA4Ig (termed Alb-CTLA4Ig) via a substrate sequence of matrix metalloproteinase (MMP). The binding activities and the biological activities of Alb-CTLA4Ig before and after MMP digestion were analyzed by a cell-based ELISA and an in vitro Jurkat T cell activation assay. The efficacy and safety of Alb-CTLA4Ig in treating joint inflammation were tested in mouse collagen-induced arthritis.</p><p><strong>Results: </strong>Alb-CTLA4Ig is stable and inactive under physiological conditions but can be fully activated by MMPs. The binding activity of nondigested Alb-CTLA4Ig was at least 10,000-fold weaker than that of MMP-digested Alb-CTLA4Ig. Nondigested Alb-CTLA4Ig was unable to inhibit Jurkat T cell activation, whereas MMP-digested Alb-CTLA4Ig was as potent as conventional CTLA4Ig in inhibiting the T cells. Alb-CTLA4Ig was converted to CTLA4Ig in the inflamed joints to treat mouse collagen-induced arthritis, showing similar efficacy to that of conventional CTLA4Ig. In contrast to conventional CTLA4Ig, Alb-CTLA4Ig did not inhibit the antimicrobial responses in the spleens of the treated mice.</p><p><strong>Conclusions: </strong>Our study indicates that Alb-CTLA4Ig can be activated by MMPs to suppress tissue inflammation in situ. Thus, Alb-CTLA4Ig is a safe and effective treatment for collagen-induced arthritis in mice.</p>","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9933273/pdf/","citationCount":"1","resultStr":"{\"title\":\"A lesion-selective albumin-CTLA4Ig as a safe and effective treatment for collagen-induced arthritis.\",\"authors\":\"Fu-Yao Jiang,&nbsp;Yan-Zhu Zhang,&nbsp;Yuan-Hong Tai,&nbsp;Chien-Yu Chou,&nbsp;Yu-Ching Hsieh,&nbsp;Ya-Chi Chang,&nbsp;Hsiao-Chen Huang,&nbsp;Zhi-Qin Li,&nbsp;Yuan-Chin Hsieh,&nbsp;I-Ju Chen,&nbsp;Bo-Cheng Huang,&nbsp;Yu-Cheng Su,&nbsp;Wen-Wei Lin,&nbsp;Hsin-Chieh Lin,&nbsp;Jui-I Chao,&nbsp;Shyng-Shiou F Yuan,&nbsp;Yun-Ming Wang,&nbsp;Tian-Lu Cheng,&nbsp;Shey-Cherng Tzou\",\"doi\":\"10.1186/s41232-023-00264-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>CTLA4Ig is a dimeric fusion protein of the extracellular domain of cytotoxic T-lymphocyte protein 4 (CTLA4) and an Fc (Ig) fragment of human IgG<sub>1</sub> that is approved for treating rheumatoid arthritis. However, CTLA4Ig may induce adverse effects. Developing a lesion-selective variant of CTLA4Ig may improve safety while maintaining the efficacy of the treatment.</p><p><strong>Methods: </strong>We linked albumin to the N-terminus of CTLA4Ig (termed Alb-CTLA4Ig) via a substrate sequence of matrix metalloproteinase (MMP). The binding activities and the biological activities of Alb-CTLA4Ig before and after MMP digestion were analyzed by a cell-based ELISA and an in vitro Jurkat T cell activation assay. The efficacy and safety of Alb-CTLA4Ig in treating joint inflammation were tested in mouse collagen-induced arthritis.</p><p><strong>Results: </strong>Alb-CTLA4Ig is stable and inactive under physiological conditions but can be fully activated by MMPs. The binding activity of nondigested Alb-CTLA4Ig was at least 10,000-fold weaker than that of MMP-digested Alb-CTLA4Ig. Nondigested Alb-CTLA4Ig was unable to inhibit Jurkat T cell activation, whereas MMP-digested Alb-CTLA4Ig was as potent as conventional CTLA4Ig in inhibiting the T cells. Alb-CTLA4Ig was converted to CTLA4Ig in the inflamed joints to treat mouse collagen-induced arthritis, showing similar efficacy to that of conventional CTLA4Ig. In contrast to conventional CTLA4Ig, Alb-CTLA4Ig did not inhibit the antimicrobial responses in the spleens of the treated mice.</p><p><strong>Conclusions: </strong>Our study indicates that Alb-CTLA4Ig can be activated by MMPs to suppress tissue inflammation in situ. Thus, Alb-CTLA4Ig is a safe and effective treatment for collagen-induced arthritis in mice.</p>\",\"PeriodicalId\":13588,\"journal\":{\"name\":\"Inflammation and Regeneration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9933273/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation and Regeneration\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s41232-023-00264-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation and Regeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s41232-023-00264-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

背景:CTLA4Ig是细胞毒性t淋巴细胞蛋白4 (CTLA4)细胞外结构域的二聚体融合蛋白和人IgG1的Fc (Ig)片段,已被批准用于治疗类风湿性关节炎。然而,CTLA4Ig可能会引起不良反应。开发CTLA4Ig的病变选择性变体可以提高安全性,同时保持治疗的有效性。方法:我们通过基质金属蛋白酶(MMP)底物序列将白蛋白连接到CTLA4Ig的n端(称为Alb-CTLA4Ig)。采用细胞酶联免疫吸附法(ELISA)和体外Jurkat T细胞活化法分析MMP消化前后Alb-CTLA4Ig的结合活性和生物活性。在小鼠胶原性关节炎实验中,研究了Alb-CTLA4Ig治疗关节炎症的疗效和安全性。结果:Alb-CTLA4Ig在生理条件下稳定且无活性,但可被MMPs充分激活。未消化的Alb-CTLA4Ig的结合活性比mmp消化的Alb-CTLA4Ig的结合活性弱至少1万倍。未消化的Alb-CTLA4Ig不能抑制Jurkat T细胞的激活,而mmp消化的Alb-CTLA4Ig在抑制T细胞方面与常规CTLA4Ig一样有效。在炎症关节中将Alb-CTLA4Ig转化为CTLA4Ig治疗小鼠胶原性关节炎,其疗效与常规CTLA4Ig相似。与常规CTLA4Ig相比,Alb-CTLA4Ig不抑制处理小鼠脾脏的抗菌反应。结论:我们的研究表明,Alb-CTLA4Ig可被MMPs激活,原位抑制组织炎症。因此,Alb-CTLA4Ig是一种安全有效的治疗小鼠胶原性关节炎的药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A lesion-selective albumin-CTLA4Ig as a safe and effective treatment for collagen-induced arthritis.

Background: CTLA4Ig is a dimeric fusion protein of the extracellular domain of cytotoxic T-lymphocyte protein 4 (CTLA4) and an Fc (Ig) fragment of human IgG1 that is approved for treating rheumatoid arthritis. However, CTLA4Ig may induce adverse effects. Developing a lesion-selective variant of CTLA4Ig may improve safety while maintaining the efficacy of the treatment.

Methods: We linked albumin to the N-terminus of CTLA4Ig (termed Alb-CTLA4Ig) via a substrate sequence of matrix metalloproteinase (MMP). The binding activities and the biological activities of Alb-CTLA4Ig before and after MMP digestion were analyzed by a cell-based ELISA and an in vitro Jurkat T cell activation assay. The efficacy and safety of Alb-CTLA4Ig in treating joint inflammation were tested in mouse collagen-induced arthritis.

Results: Alb-CTLA4Ig is stable and inactive under physiological conditions but can be fully activated by MMPs. The binding activity of nondigested Alb-CTLA4Ig was at least 10,000-fold weaker than that of MMP-digested Alb-CTLA4Ig. Nondigested Alb-CTLA4Ig was unable to inhibit Jurkat T cell activation, whereas MMP-digested Alb-CTLA4Ig was as potent as conventional CTLA4Ig in inhibiting the T cells. Alb-CTLA4Ig was converted to CTLA4Ig in the inflamed joints to treat mouse collagen-induced arthritis, showing similar efficacy to that of conventional CTLA4Ig. In contrast to conventional CTLA4Ig, Alb-CTLA4Ig did not inhibit the antimicrobial responses in the spleens of the treated mice.

Conclusions: Our study indicates that Alb-CTLA4Ig can be activated by MMPs to suppress tissue inflammation in situ. Thus, Alb-CTLA4Ig is a safe and effective treatment for collagen-induced arthritis in mice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.10
自引率
1.20%
发文量
45
审稿时长
11 weeks
期刊介绍: Inflammation and Regeneration is the official journal of the Japanese Society of Inflammation and Regeneration (JSIR). This journal provides an open access forum which covers a wide range of scientific topics in the basic and clinical researches on inflammation and regenerative medicine. It also covers investigations of infectious diseases, including COVID-19 and other emerging infectious diseases, which involve the inflammatory responses. Inflammation and Regeneration publishes papers in the following categories: research article, note, rapid communication, case report, review and clinical drug evaluation.
期刊最新文献
CX3CL1-CX3CR1 axis protects retinal ganglion cells by inhibiting microglia activation in a distal optic nerve trauma model Emilin2 marks the target region for mesenchymal cell accumulation in bone regeneration Role of cellular senescence in inflammation and regeneration Th22 is the effector cell of thymosin β15-induced hair regeneration in mice The gut-liver axis in hepatobiliary diseases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1