膜翅目 Chalcidoidea 超科寄生蜂的染色体:概述。

IF 1 4区 生物学 Q4 GENETICS & HEREDITY Comparative Cytogenetics Pub Date : 2020-08-25 eCollection Date: 2020-01-01 DOI:10.3897/CompCytogen.v14i3.56535
Vladimir E Gokhman
{"title":"膜翅目 Chalcidoidea 超科寄生蜂的染色体:概述。","authors":"Vladimir E Gokhman","doi":"10.3897/CompCytogen.v14i3.56535","DOIUrl":null,"url":null,"abstract":"<p><p>An overview of the current knowledge of chromosome sets of the parasitoid superfamily Chalcidoidea is given. Karyotypes of approximately 240 members of this group, i.e. just above one percent of described species, are studied up to now. Techniques for obtaining and analyzing preparations of chalcid chromosomes are outlined, including the so-called \"traditional\" and \"modern\" methods of differential staining as well as fluorescence in situ hybridization (FISH). Among the Chalcidoidea, the haploid chromosome number can vary from n = 3 to n = 11, with a clear mode at n = 6 and a second local maximum at n = 10. In this group, most chromosomes are either metacentric or submetacentric, but acrocentrics and/or subtelocentrics also can predominate, especially within karyotypes of certain Chalcidoidea with higher chromosome numbers. The following main types of chromosomal mutations are characteristic of chalcid karyotypes: inversions, fusions, translocations, polyploidy, aneuploidy and B chromosome variation. Although karyotype evolution of this superfamily was mainly studied using phylogenetic reconstructions based on morphological and/or molecular characters, chromosomal synapomorphies of certain groups were also revealed. Taxonomic implications of karyotypic features of the Chalcidoidea are apparently the most important at the species level, especially among cryptic taxa.</p>","PeriodicalId":50656,"journal":{"name":"Comparative Cytogenetics","volume":"14 3","pages":"399-416"},"PeriodicalIF":1.0000,"publicationDate":"2020-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9849058/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chromosomes of parasitic wasps of the superfamily Chalcidoidea (Hymenoptera): An overview.\",\"authors\":\"Vladimir E Gokhman\",\"doi\":\"10.3897/CompCytogen.v14i3.56535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An overview of the current knowledge of chromosome sets of the parasitoid superfamily Chalcidoidea is given. Karyotypes of approximately 240 members of this group, i.e. just above one percent of described species, are studied up to now. Techniques for obtaining and analyzing preparations of chalcid chromosomes are outlined, including the so-called \\\"traditional\\\" and \\\"modern\\\" methods of differential staining as well as fluorescence in situ hybridization (FISH). Among the Chalcidoidea, the haploid chromosome number can vary from n = 3 to n = 11, with a clear mode at n = 6 and a second local maximum at n = 10. In this group, most chromosomes are either metacentric or submetacentric, but acrocentrics and/or subtelocentrics also can predominate, especially within karyotypes of certain Chalcidoidea with higher chromosome numbers. The following main types of chromosomal mutations are characteristic of chalcid karyotypes: inversions, fusions, translocations, polyploidy, aneuploidy and B chromosome variation. Although karyotype evolution of this superfamily was mainly studied using phylogenetic reconstructions based on morphological and/or molecular characters, chromosomal synapomorphies of certain groups were also revealed. Taxonomic implications of karyotypic features of the Chalcidoidea are apparently the most important at the species level, especially among cryptic taxa.</p>\",\"PeriodicalId\":50656,\"journal\":{\"name\":\"Comparative Cytogenetics\",\"volume\":\"14 3\",\"pages\":\"399-416\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9849058/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Cytogenetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3897/CompCytogen.v14i3.56535\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Cytogenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3897/CompCytogen.v14i3.56535","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

本文概述了寄生虫超家族 Chalcidoidea 的染色体组的现有知识。迄今为止,已研究了该类约 240 个成员的核型,即略高于 1%的已描述物种。概述了获取和分析 Chalcido 染色体制备物的技术,包括所谓的 "传统 "和 "现代 "差异染色法以及荧光原位杂交(FISH)法。在蝶形目中,单倍体染色体数目从 n = 3 到 n = 11 不等,n = 6 是一个明显的模式,n = 10 是第二个局部最大值。在这一群体中,大多数染色体都是偏心或亚偏心的,但尖心型和/或亚尖心型也可能占主导地位,尤其是在某些染色体数目较多的壳斗目核型中。Chalcid 类核型的染色体突变主要有以下几种:倒位、融合、易位、多倍体、非整倍体和 B 染色体变异。虽然该超科的核型进化主要是通过基于形态和/或分子特征的系统进化重建来研究的,但也揭示了某些类群的染色体同形异构现象。Chalcidoidea 的核型特征对分类学的影响显然在物种水平上最为重要,尤其是在隐生类群中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chromosomes of parasitic wasps of the superfamily Chalcidoidea (Hymenoptera): An overview.

An overview of the current knowledge of chromosome sets of the parasitoid superfamily Chalcidoidea is given. Karyotypes of approximately 240 members of this group, i.e. just above one percent of described species, are studied up to now. Techniques for obtaining and analyzing preparations of chalcid chromosomes are outlined, including the so-called "traditional" and "modern" methods of differential staining as well as fluorescence in situ hybridization (FISH). Among the Chalcidoidea, the haploid chromosome number can vary from n = 3 to n = 11, with a clear mode at n = 6 and a second local maximum at n = 10. In this group, most chromosomes are either metacentric or submetacentric, but acrocentrics and/or subtelocentrics also can predominate, especially within karyotypes of certain Chalcidoidea with higher chromosome numbers. The following main types of chromosomal mutations are characteristic of chalcid karyotypes: inversions, fusions, translocations, polyploidy, aneuploidy and B chromosome variation. Although karyotype evolution of this superfamily was mainly studied using phylogenetic reconstructions based on morphological and/or molecular characters, chromosomal synapomorphies of certain groups were also revealed. Taxonomic implications of karyotypic features of the Chalcidoidea are apparently the most important at the species level, especially among cryptic taxa.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Comparative Cytogenetics
Comparative Cytogenetics 生物-遗传学
CiteScore
2.40
自引率
0.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: Comparative Cytogenetics is a peer-reviewed, open-access, rapid online journal launched to accelerate research on all aspects of plant and animal cytogenetics, karyosystematics, and molecular systematics. All published papers can be freely copied, downloaded, printed and distributed at no charge for the reader. Authors are thus encouraged to post the pdf files of published papers on their homepages or elsewhere to expedite distribution. There is no charge for color.
期刊最新文献
Description of the complete rDNA repeat unit structure of Coturnixjaponica Temminck et Schlegel, 1849 (Aves). Different observers introduce not negligible biases in comparative karyomorphological studies. Karyotypic description and comparison of Litoria (L.) paraewingi (Watson et al., 1971), L.ewingii (Duméril et Bibron, 1841) and L.jervisiensis (Duméril et Bibron, 1841) (Amphibia, Anura). The complete chloroplast genome of Rhododendronambiguum and comparative genomics of related species. Physical chromosomal mapping of major ribosomal genes in 15 ant species with a review of hypotheses regarding evolution of the number and position of NORs in ants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1