{"title":"基于适当正交分解的地层通风送风参数优化。","authors":"Yang Liu, Wuxuan Pan, Zhengwei Long","doi":"10.1016/j.scs.2021.103291","DOIUrl":null,"url":null,"abstract":"<p><p>Under the current COVID-19 epidemic conditions, stratum ventilation can provide treated fresh air directly into the human breathing zone, improving the air quality for inhalation. However, in the design of air supply parameters for stratum ventilation, the traditional trial-and-error and experimental methods are inefficient and time consuming, and they cannot be used to identify the optimal air supply parameters from a large number of parameters. Therefore, in this paper, the inverse design method based on proper orthogonal decomposition (POD) was applied to the design of ventilation parameters for a room with stratum ventilation. Predicted mean vote (PMV), predicted percentage dissatisfied (PPD) and droplet nuclei concentration in the human breathing zone were selected as design objectives to optimize air supply parameters. The transmission of COVID-19 was controlled by reducing the concentration of droplet nuclei in the respiratory area. The results show that, compared with the trial-and-error method, the inverse design method based on POD is more than 90% faster. POD method can greatly expand the sample size. Considering the dispersion of exhaled droplet nuclei in the room, the appropriate stratum ventilation parameters can reduce the concentration of fine droplet nuclei by more than 20% compared with the traditional design parameters.</p>","PeriodicalId":22307,"journal":{"name":"Sustainable Cities and Society","volume":"75 ","pages":"103291"},"PeriodicalIF":11.7000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.scs.2021.103291","citationCount":"14","resultStr":"{\"title\":\"Optimization of air supply parameters for stratum ventilation based on proper orthogonal decomposition.\",\"authors\":\"Yang Liu, Wuxuan Pan, Zhengwei Long\",\"doi\":\"10.1016/j.scs.2021.103291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Under the current COVID-19 epidemic conditions, stratum ventilation can provide treated fresh air directly into the human breathing zone, improving the air quality for inhalation. However, in the design of air supply parameters for stratum ventilation, the traditional trial-and-error and experimental methods are inefficient and time consuming, and they cannot be used to identify the optimal air supply parameters from a large number of parameters. Therefore, in this paper, the inverse design method based on proper orthogonal decomposition (POD) was applied to the design of ventilation parameters for a room with stratum ventilation. Predicted mean vote (PMV), predicted percentage dissatisfied (PPD) and droplet nuclei concentration in the human breathing zone were selected as design objectives to optimize air supply parameters. The transmission of COVID-19 was controlled by reducing the concentration of droplet nuclei in the respiratory area. The results show that, compared with the trial-and-error method, the inverse design method based on POD is more than 90% faster. POD method can greatly expand the sample size. Considering the dispersion of exhaled droplet nuclei in the room, the appropriate stratum ventilation parameters can reduce the concentration of fine droplet nuclei by more than 20% compared with the traditional design parameters.</p>\",\"PeriodicalId\":22307,\"journal\":{\"name\":\"Sustainable Cities and Society\",\"volume\":\"75 \",\"pages\":\"103291\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.scs.2021.103291\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Cities and Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scs.2021.103291\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Cities and Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.scs.2021.103291","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Optimization of air supply parameters for stratum ventilation based on proper orthogonal decomposition.
Under the current COVID-19 epidemic conditions, stratum ventilation can provide treated fresh air directly into the human breathing zone, improving the air quality for inhalation. However, in the design of air supply parameters for stratum ventilation, the traditional trial-and-error and experimental methods are inefficient and time consuming, and they cannot be used to identify the optimal air supply parameters from a large number of parameters. Therefore, in this paper, the inverse design method based on proper orthogonal decomposition (POD) was applied to the design of ventilation parameters for a room with stratum ventilation. Predicted mean vote (PMV), predicted percentage dissatisfied (PPD) and droplet nuclei concentration in the human breathing zone were selected as design objectives to optimize air supply parameters. The transmission of COVID-19 was controlled by reducing the concentration of droplet nuclei in the respiratory area. The results show that, compared with the trial-and-error method, the inverse design method based on POD is more than 90% faster. POD method can greatly expand the sample size. Considering the dispersion of exhaled droplet nuclei in the room, the appropriate stratum ventilation parameters can reduce the concentration of fine droplet nuclei by more than 20% compared with the traditional design parameters.
期刊介绍:
Sustainable Cities and Society (SCS) is an international journal focusing on fundamental and applied research aimed at designing, understanding, and promoting environmentally sustainable and socially resilient cities.