基于遗传算法的空间注意力辅助CNN对传感器数据的人类活动识别。

IF 4.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Computing & Applications Pub Date : 2023-01-01 DOI:10.1007/s00521-022-07911-0
Apu Sarkar, S K Sabbir Hossain, Ram Sarkar
{"title":"基于遗传算法的空间注意力辅助CNN对传感器数据的人类活动识别。","authors":"Apu Sarkar,&nbsp;S K Sabbir Hossain,&nbsp;Ram Sarkar","doi":"10.1007/s00521-022-07911-0","DOIUrl":null,"url":null,"abstract":"<p><p>Capturing time and frequency relationships of time series signals offers an inherent barrier for automatic human activity recognition (HAR) from wearable sensor data. Extracting spatiotemporal context from the feature space of the sensor reading sequence is challenging for the current recurrent, convolutional, or hybrid activity recognition models. The overall classification accuracy also gets affected by large size feature maps that these models generate. To this end, in this work, we have put forth a hybrid architecture for wearable sensor data-based HAR. We initially use Continuous Wavelet Transform to encode the time series of sensor data as multi-channel images. Then, we utilize a Spatial Attention-aided Convolutional Neural Network (CNN) to extract higher-dimensional features. To find the most essential features for recognizing human activities, we develop a novel feature selection (FS) method. In order to identify the fitness of the features for the FS, we first employ three filter-based methods: Mutual Information (MI), Relief-F, and minimum redundancy maximum relevance (mRMR). The best set of features is then chosen by removing the lower-ranked features using a modified version of the Genetic Algorithm (GA). The K-Nearest Neighbors (KNN) classifier is then used to categorize human activities. We conduct comprehensive experiments on five well-known, publicly accessible HAR datasets, namely UCI-HAR, WISDM, MHEALTH, PAMAP2, and HHAR. Our model significantly outperforms the state-of-the-art models in terms of classification performance. We also observe an improvement in overall recognition accuracy with the use of GA-based FS technique with a lower number of features. The source code of the paper is publicly available here https://github.com/apusarkar2195/HAR_WaveletTransform_SpatialAttention_FeatureSelection.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9596348/pdf/","citationCount":"13","resultStr":"{\"title\":\"Human activity recognition from sensor data using spatial attention-aided CNN with genetic algorithm.\",\"authors\":\"Apu Sarkar,&nbsp;S K Sabbir Hossain,&nbsp;Ram Sarkar\",\"doi\":\"10.1007/s00521-022-07911-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Capturing time and frequency relationships of time series signals offers an inherent barrier for automatic human activity recognition (HAR) from wearable sensor data. Extracting spatiotemporal context from the feature space of the sensor reading sequence is challenging for the current recurrent, convolutional, or hybrid activity recognition models. The overall classification accuracy also gets affected by large size feature maps that these models generate. To this end, in this work, we have put forth a hybrid architecture for wearable sensor data-based HAR. We initially use Continuous Wavelet Transform to encode the time series of sensor data as multi-channel images. Then, we utilize a Spatial Attention-aided Convolutional Neural Network (CNN) to extract higher-dimensional features. To find the most essential features for recognizing human activities, we develop a novel feature selection (FS) method. In order to identify the fitness of the features for the FS, we first employ three filter-based methods: Mutual Information (MI), Relief-F, and minimum redundancy maximum relevance (mRMR). The best set of features is then chosen by removing the lower-ranked features using a modified version of the Genetic Algorithm (GA). The K-Nearest Neighbors (KNN) classifier is then used to categorize human activities. We conduct comprehensive experiments on five well-known, publicly accessible HAR datasets, namely UCI-HAR, WISDM, MHEALTH, PAMAP2, and HHAR. Our model significantly outperforms the state-of-the-art models in terms of classification performance. We also observe an improvement in overall recognition accuracy with the use of GA-based FS technique with a lower number of features. The source code of the paper is publicly available here https://github.com/apusarkar2195/HAR_WaveletTransform_SpatialAttention_FeatureSelection.</p>\",\"PeriodicalId\":49766,\"journal\":{\"name\":\"Neural Computing & Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9596348/pdf/\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computing & Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00521-022-07911-0\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-022-07911-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 13

摘要

捕获时间序列信号的时间和频率关系为从可穿戴传感器数据中自动识别人类活动(HAR)提供了固有的障碍。从传感器读取序列的特征空间中提取时空背景对于当前的循环、卷积或混合活动识别模型来说是一个挑战。总体分类精度也受到这些模型生成的大尺寸特征映射的影响。为此,在本工作中,我们提出了一种基于可穿戴传感器数据的混合HAR架构。我们首先使用连续小波变换将传感器数据的时间序列编码为多通道图像。然后,我们利用空间注意辅助卷积神经网络(CNN)来提取高维特征。为了找到识别人类活动的最基本特征,我们提出了一种新的特征选择方法。为了识别FS特征的适应度,我们首先采用了三种基于滤波器的方法:互信息(MI)、Relief-F和最小冗余最大相关性(mRMR)。然后,通过使用遗传算法(GA)的改进版本去除排名较低的特征来选择最佳特征集。然后使用k近邻(KNN)分类器对人类活动进行分类。我们在UCI-HAR、WISDM、MHEALTH、PAMAP2和HHAR这五个知名的、可公开访问的HAR数据集上进行了全面的实验。我们的模型在分类性能方面明显优于最先进的模型。我们还观察到,使用基于ga的FS技术,使用较少数量的特征,可以提高整体识别精度。论文的源代码可以在这里公开获得https://github.com/apusarkar2195/HAR_WaveletTransform_SpatialAttention_FeatureSelection。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human activity recognition from sensor data using spatial attention-aided CNN with genetic algorithm.

Capturing time and frequency relationships of time series signals offers an inherent barrier for automatic human activity recognition (HAR) from wearable sensor data. Extracting spatiotemporal context from the feature space of the sensor reading sequence is challenging for the current recurrent, convolutional, or hybrid activity recognition models. The overall classification accuracy also gets affected by large size feature maps that these models generate. To this end, in this work, we have put forth a hybrid architecture for wearable sensor data-based HAR. We initially use Continuous Wavelet Transform to encode the time series of sensor data as multi-channel images. Then, we utilize a Spatial Attention-aided Convolutional Neural Network (CNN) to extract higher-dimensional features. To find the most essential features for recognizing human activities, we develop a novel feature selection (FS) method. In order to identify the fitness of the features for the FS, we first employ three filter-based methods: Mutual Information (MI), Relief-F, and minimum redundancy maximum relevance (mRMR). The best set of features is then chosen by removing the lower-ranked features using a modified version of the Genetic Algorithm (GA). The K-Nearest Neighbors (KNN) classifier is then used to categorize human activities. We conduct comprehensive experiments on five well-known, publicly accessible HAR datasets, namely UCI-HAR, WISDM, MHEALTH, PAMAP2, and HHAR. Our model significantly outperforms the state-of-the-art models in terms of classification performance. We also observe an improvement in overall recognition accuracy with the use of GA-based FS technique with a lower number of features. The source code of the paper is publicly available here https://github.com/apusarkar2195/HAR_WaveletTransform_SpatialAttention_FeatureSelection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Computing & Applications
Neural Computing & Applications 工程技术-计算机:人工智能
CiteScore
11.40
自引率
8.30%
发文量
1280
审稿时长
6.9 months
期刊介绍: Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems. All items relevant to building practical systems are within its scope, including but not limited to: -adaptive computing- algorithms- applicable neural networks theory- applied statistics- architectures- artificial intelligence- benchmarks- case histories of innovative applications- fuzzy logic- genetic algorithms- hardware implementations- hybrid intelligent systems- intelligent agents- intelligent control systems- intelligent diagnostics- intelligent forecasting- machine learning- neural networks- neuro-fuzzy systems- pattern recognition- performance measures- self-learning systems- software simulations- supervised and unsupervised learning methods- system engineering and integration. Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.
期刊最新文献
Stress monitoring using wearable sensors: IoT techniques in medical field. A new hybrid model of convolutional neural networks and hidden Markov chains for image classification. Analysing sentiment change detection of Covid-19 tweets. Normal vibration distribution search-based differential evolution algorithm for multimodal biomedical image registration. Special issue on deep learning and big data analytics for medical e-diagnosis/AI-based e-diagnosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1