Elin Eneberg, Christopher R Jones, Thomas Jensen, Kristine Langthaler, Christoffer Bundgaard
{"title":"啮齿动物转运蛋白敲除模型在药物开发中评估脑渗透的实际应用。","authors":"Elin Eneberg, Christopher R Jones, Thomas Jensen, Kristine Langthaler, Christoffer Bundgaard","doi":"10.2174/1872312815666220222091032","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>Compound X is a drug candidate for the treatment of neurodegenerative diseases. Its brain distribution was evaluated as part of the lead identification and optimization activities undertaken in early drug discovery.</p><p><strong>Methods: </strong>The brain distribution of compound X was studied in genetic transporter knockout rodent models, in vivo models with a chemical inhibitor, and in vitro transporter cell systems.</p><p><strong>Results: </strong>Compound X was found to be a substrate for human Breast Cancer-Resistance Protein (BCRP) in vitro (efflux ratio 8.1) and rodent Bcrp in vivo (Kp, uuKO/Kp, uuWT = 0.15/0.057 = 2.7, p< 0.05) but not a substrate for human P-glycoprotein (P-gp) in vitro (efflux ratio 1.0) nor rodent P-gp in vivo (Kp, uuKO/Kp, uuWT = 0.056/ 0.051 = 1.1, p> 0.05). When both transporters were knocked out in vivo, Kp, uu increased to 0.51±0.02. A similar pattern observed across compounds with related chemistry corroborating the structure-activity relationship.</p><p><strong>Conclusion: </strong>While in vitro assays showed compound X to be a substrate for human BCRP and not P-gp, in vivo studies indicated a synergistic effect between rodent efflux transporters. However, this only accounted for ~50% of restricted BBB-transport, suggesting involvement of other efflux transporters. Considering Kp, uu as a key criterion for assessing the technical quality of CNS candidates before progression into clinical development, it is important to identify relevant screening assays for a better understanding of low Kp, uu and brain distribution in pre-clinical models for translation to humans.</p>","PeriodicalId":72844,"journal":{"name":"Drug metabolism and bioanalysis letters","volume":"15 1","pages":"12-21"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Practical Application of Rodent Transporter Knockout Models to Assess Brain Penetration in Drug Discovery.\",\"authors\":\"Elin Eneberg, Christopher R Jones, Thomas Jensen, Kristine Langthaler, Christoffer Bundgaard\",\"doi\":\"10.2174/1872312815666220222091032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and objective: </strong>Compound X is a drug candidate for the treatment of neurodegenerative diseases. Its brain distribution was evaluated as part of the lead identification and optimization activities undertaken in early drug discovery.</p><p><strong>Methods: </strong>The brain distribution of compound X was studied in genetic transporter knockout rodent models, in vivo models with a chemical inhibitor, and in vitro transporter cell systems.</p><p><strong>Results: </strong>Compound X was found to be a substrate for human Breast Cancer-Resistance Protein (BCRP) in vitro (efflux ratio 8.1) and rodent Bcrp in vivo (Kp, uuKO/Kp, uuWT = 0.15/0.057 = 2.7, p< 0.05) but not a substrate for human P-glycoprotein (P-gp) in vitro (efflux ratio 1.0) nor rodent P-gp in vivo (Kp, uuKO/Kp, uuWT = 0.056/ 0.051 = 1.1, p> 0.05). When both transporters were knocked out in vivo, Kp, uu increased to 0.51±0.02. A similar pattern observed across compounds with related chemistry corroborating the structure-activity relationship.</p><p><strong>Conclusion: </strong>While in vitro assays showed compound X to be a substrate for human BCRP and not P-gp, in vivo studies indicated a synergistic effect between rodent efflux transporters. However, this only accounted for ~50% of restricted BBB-transport, suggesting involvement of other efflux transporters. Considering Kp, uu as a key criterion for assessing the technical quality of CNS candidates before progression into clinical development, it is important to identify relevant screening assays for a better understanding of low Kp, uu and brain distribution in pre-clinical models for translation to humans.</p>\",\"PeriodicalId\":72844,\"journal\":{\"name\":\"Drug metabolism and bioanalysis letters\",\"volume\":\"15 1\",\"pages\":\"12-21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug metabolism and bioanalysis letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1872312815666220222091032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug metabolism and bioanalysis letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1872312815666220222091032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Practical Application of Rodent Transporter Knockout Models to Assess Brain Penetration in Drug Discovery.
Background and objective: Compound X is a drug candidate for the treatment of neurodegenerative diseases. Its brain distribution was evaluated as part of the lead identification and optimization activities undertaken in early drug discovery.
Methods: The brain distribution of compound X was studied in genetic transporter knockout rodent models, in vivo models with a chemical inhibitor, and in vitro transporter cell systems.
Results: Compound X was found to be a substrate for human Breast Cancer-Resistance Protein (BCRP) in vitro (efflux ratio 8.1) and rodent Bcrp in vivo (Kp, uuKO/Kp, uuWT = 0.15/0.057 = 2.7, p< 0.05) but not a substrate for human P-glycoprotein (P-gp) in vitro (efflux ratio 1.0) nor rodent P-gp in vivo (Kp, uuKO/Kp, uuWT = 0.056/ 0.051 = 1.1, p> 0.05). When both transporters were knocked out in vivo, Kp, uu increased to 0.51±0.02. A similar pattern observed across compounds with related chemistry corroborating the structure-activity relationship.
Conclusion: While in vitro assays showed compound X to be a substrate for human BCRP and not P-gp, in vivo studies indicated a synergistic effect between rodent efflux transporters. However, this only accounted for ~50% of restricted BBB-transport, suggesting involvement of other efflux transporters. Considering Kp, uu as a key criterion for assessing the technical quality of CNS candidates before progression into clinical development, it is important to identify relevant screening assays for a better understanding of low Kp, uu and brain distribution in pre-clinical models for translation to humans.