Shasha An, Zhiping Zhen, Shijiao Wang, Mingze Sang, Shuai Zhang
{"title":"肠道微生物群是负荷游泳改善小腿3-/-大鼠焦虑行为和肌肉力量的关键靶点。","authors":"Shasha An, Zhiping Zhen, Shijiao Wang, Mingze Sang, Shuai Zhang","doi":"10.1007/s12035-023-03670-8","DOIUrl":null,"url":null,"abstract":"<p><p>Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social disorder and stereotypical behavior, and its incidence rate is increasing yearly. It is considered that acritical period for the prognosis of young children with ASD exists, thus early treatment is crucial. Swimming, due to its comforting effect, is often used to induce enthusiasm in young children for completing activities and has a good effect in the treatment of ASD, but the effective path of swimming has yet to be reported. The intestinal microbiota of ASD patients and animal models has been reported to be different from that of healthy controls, and these changes may affect the brain environment. Therefore, whether the intestinal microbiota is involved in the treatment of ASD by early swimming is our concern. In this study, we used 8-day old Shank3 gene knockout rats with 8 weeks of early load swimming training and conducted behavioral, small intestine morphology, and intestinal content sequencing after training. The results showed that early load swimming significantly reduced the stereotyped and anxious behaviors of Shank3<sup>-/-</sup> rats, increased their muscle strength, increased the length of intestinal villi and the width of the muscular layer after Shank3 knockout, and affected the abundance of intestinal microorganisms. The abundances with statistical significance were Lactobacillus, Lachnospiraceae, and Alloprevotella. To further confirm the role of intestinal microorganisms in it, we designed a 14-day intestinal stool transplantation experiment. Fecal microbiota transplantation demonstrated that load swimming can significantly reduce the anxiety behavior of Shank3 rats, increase their muscle strength, change the structure of the small intestine, and affect the abundance of intestinal contents. The abundance of Epsilonbateraeota, Prevotella, and Bacteroides significantly changed after transplantation. Our findings confirm the possibility of early load swimming therapy for individuals with ASD and explain that the intestinal microbiota is a key pathway for early exercise therapy for patients with ASD.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"9961-9976"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intestinal Microbiota Is a Key Target for Load Swimming to Improve Anxiety Behavior and Muscle Strength in Shank 3<sup>-/-</sup> Rats.\",\"authors\":\"Shasha An, Zhiping Zhen, Shijiao Wang, Mingze Sang, Shuai Zhang\",\"doi\":\"10.1007/s12035-023-03670-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social disorder and stereotypical behavior, and its incidence rate is increasing yearly. It is considered that acritical period for the prognosis of young children with ASD exists, thus early treatment is crucial. Swimming, due to its comforting effect, is often used to induce enthusiasm in young children for completing activities and has a good effect in the treatment of ASD, but the effective path of swimming has yet to be reported. The intestinal microbiota of ASD patients and animal models has been reported to be different from that of healthy controls, and these changes may affect the brain environment. Therefore, whether the intestinal microbiota is involved in the treatment of ASD by early swimming is our concern. In this study, we used 8-day old Shank3 gene knockout rats with 8 weeks of early load swimming training and conducted behavioral, small intestine morphology, and intestinal content sequencing after training. The results showed that early load swimming significantly reduced the stereotyped and anxious behaviors of Shank3<sup>-/-</sup> rats, increased their muscle strength, increased the length of intestinal villi and the width of the muscular layer after Shank3 knockout, and affected the abundance of intestinal microorganisms. The abundances with statistical significance were Lactobacillus, Lachnospiraceae, and Alloprevotella. To further confirm the role of intestinal microorganisms in it, we designed a 14-day intestinal stool transplantation experiment. Fecal microbiota transplantation demonstrated that load swimming can significantly reduce the anxiety behavior of Shank3 rats, increase their muscle strength, change the structure of the small intestine, and affect the abundance of intestinal contents. The abundance of Epsilonbateraeota, Prevotella, and Bacteroides significantly changed after transplantation. Our findings confirm the possibility of early load swimming therapy for individuals with ASD and explain that the intestinal microbiota is a key pathway for early exercise therapy for patients with ASD.</p>\",\"PeriodicalId\":18762,\"journal\":{\"name\":\"Molecular Neurobiology\",\"volume\":\" \",\"pages\":\"9961-9976\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12035-023-03670-8\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-023-03670-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Intestinal Microbiota Is a Key Target for Load Swimming to Improve Anxiety Behavior and Muscle Strength in Shank 3-/- Rats.
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social disorder and stereotypical behavior, and its incidence rate is increasing yearly. It is considered that acritical period for the prognosis of young children with ASD exists, thus early treatment is crucial. Swimming, due to its comforting effect, is often used to induce enthusiasm in young children for completing activities and has a good effect in the treatment of ASD, but the effective path of swimming has yet to be reported. The intestinal microbiota of ASD patients and animal models has been reported to be different from that of healthy controls, and these changes may affect the brain environment. Therefore, whether the intestinal microbiota is involved in the treatment of ASD by early swimming is our concern. In this study, we used 8-day old Shank3 gene knockout rats with 8 weeks of early load swimming training and conducted behavioral, small intestine morphology, and intestinal content sequencing after training. The results showed that early load swimming significantly reduced the stereotyped and anxious behaviors of Shank3-/- rats, increased their muscle strength, increased the length of intestinal villi and the width of the muscular layer after Shank3 knockout, and affected the abundance of intestinal microorganisms. The abundances with statistical significance were Lactobacillus, Lachnospiraceae, and Alloprevotella. To further confirm the role of intestinal microorganisms in it, we designed a 14-day intestinal stool transplantation experiment. Fecal microbiota transplantation demonstrated that load swimming can significantly reduce the anxiety behavior of Shank3 rats, increase their muscle strength, change the structure of the small intestine, and affect the abundance of intestinal contents. The abundance of Epsilonbateraeota, Prevotella, and Bacteroides significantly changed after transplantation. Our findings confirm the possibility of early load swimming therapy for individuals with ASD and explain that the intestinal microbiota is a key pathway for early exercise therapy for patients with ASD.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.