Yuan Lin , Archana M. Agarwal , Lissa C. Anderson , Alan G. Marshall
{"title":"β-地中海贫血生物标志物的HPLC-MS发现及质子转移反应-平行离子停放的改进","authors":"Yuan Lin , Archana M. Agarwal , Lissa C. Anderson , Alan G. Marshall","doi":"10.1016/j.jmsacl.2023.01.004","DOIUrl":null,"url":null,"abstract":"<div><p>β-thalassemia is a quantitative hemoglobin (Hb) disorder resulting in reduced production of Hb A and increased levels of Hb A<sub>2</sub>. Diagnosis of β-thalassemia can be problematic when combined with other structural Hb variants, so that the separation approaches in routine clinical centers are not sufficiently decisive to obtain accurate results. Here, we separate the intact Hb subunits by high-performance liquid chromatography, followed by top-down tandem mass spectrometry of intact subunits to distinguish Hb variants. Proton transfer reaction-parallel ion parking (PTR-PIP), in which a radical anion removes protons from multiply charged precursor ions and produces charge-reduced ions spanning a limited <em>m</em>/<em>z</em> range, was used to increase the signal-to-noise ratio of the subunits of interest. We demonstrate that the δ/β ratio can act as a biomarker to identify β-thalassemia in normal electrospray ionization MS1 and PTR-PIP MS1. The application of PTR-PIP significantly increases the sensitivity and specificity of the HPLC-MS method to identify δ/β ratio as a thalassemia biomarker.</p></div>","PeriodicalId":52406,"journal":{"name":"Journal of Mass Spectrometry and Advances in the Clinical Lab","volume":"28 ","pages":"Pages 20-26"},"PeriodicalIF":3.1000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/93/66/main.PMC9939715.pdf","citationCount":"0","resultStr":"{\"title\":\"Discovery of a biomarker for β-Thalassemia by HPLC-MS and improvement from Proton Transfer Reaction – Parallel Ion Parking\",\"authors\":\"Yuan Lin , Archana M. Agarwal , Lissa C. Anderson , Alan G. Marshall\",\"doi\":\"10.1016/j.jmsacl.2023.01.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>β-thalassemia is a quantitative hemoglobin (Hb) disorder resulting in reduced production of Hb A and increased levels of Hb A<sub>2</sub>. Diagnosis of β-thalassemia can be problematic when combined with other structural Hb variants, so that the separation approaches in routine clinical centers are not sufficiently decisive to obtain accurate results. Here, we separate the intact Hb subunits by high-performance liquid chromatography, followed by top-down tandem mass spectrometry of intact subunits to distinguish Hb variants. Proton transfer reaction-parallel ion parking (PTR-PIP), in which a radical anion removes protons from multiply charged precursor ions and produces charge-reduced ions spanning a limited <em>m</em>/<em>z</em> range, was used to increase the signal-to-noise ratio of the subunits of interest. We demonstrate that the δ/β ratio can act as a biomarker to identify β-thalassemia in normal electrospray ionization MS1 and PTR-PIP MS1. The application of PTR-PIP significantly increases the sensitivity and specificity of the HPLC-MS method to identify δ/β ratio as a thalassemia biomarker.</p></div>\",\"PeriodicalId\":52406,\"journal\":{\"name\":\"Journal of Mass Spectrometry and Advances in the Clinical Lab\",\"volume\":\"28 \",\"pages\":\"Pages 20-26\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/93/66/main.PMC9939715.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mass Spectrometry and Advances in the Clinical Lab\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667145X23000044\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mass Spectrometry and Advances in the Clinical Lab","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667145X23000044","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
Discovery of a biomarker for β-Thalassemia by HPLC-MS and improvement from Proton Transfer Reaction – Parallel Ion Parking
β-thalassemia is a quantitative hemoglobin (Hb) disorder resulting in reduced production of Hb A and increased levels of Hb A2. Diagnosis of β-thalassemia can be problematic when combined with other structural Hb variants, so that the separation approaches in routine clinical centers are not sufficiently decisive to obtain accurate results. Here, we separate the intact Hb subunits by high-performance liquid chromatography, followed by top-down tandem mass spectrometry of intact subunits to distinguish Hb variants. Proton transfer reaction-parallel ion parking (PTR-PIP), in which a radical anion removes protons from multiply charged precursor ions and produces charge-reduced ions spanning a limited m/z range, was used to increase the signal-to-noise ratio of the subunits of interest. We demonstrate that the δ/β ratio can act as a biomarker to identify β-thalassemia in normal electrospray ionization MS1 and PTR-PIP MS1. The application of PTR-PIP significantly increases the sensitivity and specificity of the HPLC-MS method to identify δ/β ratio as a thalassemia biomarker.