不同麻醉深度下与年龄相关的脑电图特征

IF 1.6 4区 医学 Q3 CLINICAL NEUROLOGY Clinical EEG and Neuroscience Pub Date : 2024-11-01 Epub Date: 2022-12-12 DOI:10.1177/15500594221142680
Feixiang Li, Yaoyao Dang, Xuan Zhang, Huimin Chen, Yuechun Lu, Yonghao Yu
{"title":"不同麻醉深度下与年龄相关的脑电图特征","authors":"Feixiang Li, Yaoyao Dang, Xuan Zhang, Huimin Chen, Yuechun Lu, Yonghao Yu","doi":"10.1177/15500594221142680","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective</b> The monitoring of anesthetic depth based on electroencephalogram derivation is not currently adjusted for age. Here we analyze the influence of age factors on electroencephalogram characteristics. <b>Methods</b> Frontal electroencephalogram recordings were obtained from 80 adults during routine clinical anesthesia. The characteristics of electroencephalogram with age and anesthesia were observed during four kinds of anesthesia. <b>Results</b> The slow wave power, δ power, Bispectral Index (BIS) and approximate entropy can be used to distinguish different states of anesthesia (P < 0.05). In the deep and very deep anesthesia states, δ power decreased with age (P < 0.0001). In the very deep anesthesia state, θ power decreased with age (P < 0.05). In the deep and very deep anesthesia states, α power decreased with age (P = 0.0002). In the light and deep anesthesia states, β power decreased with age (P = 0.003). In the deep anesthesia state, γ power decreased with age (P = 0.002). In the very deep anesthesia state, permutation entropy increased significantly with age (P = 0.0001). In the very deep anesthesia state, BIS value increased with age (P = 0.006). The slow wave power, approximate entropy, and sample entropy did not show age-dependent changes. <b>Conclusions</b> The influence of age should be considered when using BIS and δ power to monitor the depth of anesthesia, while the influence of age should not be considered when using slow wave power and approximate entropy to monitor the depth of anesthesia.</p>","PeriodicalId":10682,"journal":{"name":"Clinical EEG and Neuroscience","volume":" ","pages":"651-656"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Age-dependent Electroencephalogram Characteristics During Different Levels of Anesthetic Depth.\",\"authors\":\"Feixiang Li, Yaoyao Dang, Xuan Zhang, Huimin Chen, Yuechun Lu, Yonghao Yu\",\"doi\":\"10.1177/15500594221142680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Objective</b> The monitoring of anesthetic depth based on electroencephalogram derivation is not currently adjusted for age. Here we analyze the influence of age factors on electroencephalogram characteristics. <b>Methods</b> Frontal electroencephalogram recordings were obtained from 80 adults during routine clinical anesthesia. The characteristics of electroencephalogram with age and anesthesia were observed during four kinds of anesthesia. <b>Results</b> The slow wave power, δ power, Bispectral Index (BIS) and approximate entropy can be used to distinguish different states of anesthesia (P < 0.05). In the deep and very deep anesthesia states, δ power decreased with age (P < 0.0001). In the very deep anesthesia state, θ power decreased with age (P < 0.05). In the deep and very deep anesthesia states, α power decreased with age (P = 0.0002). In the light and deep anesthesia states, β power decreased with age (P = 0.003). In the deep anesthesia state, γ power decreased with age (P = 0.002). In the very deep anesthesia state, permutation entropy increased significantly with age (P = 0.0001). In the very deep anesthesia state, BIS value increased with age (P = 0.006). The slow wave power, approximate entropy, and sample entropy did not show age-dependent changes. <b>Conclusions</b> The influence of age should be considered when using BIS and δ power to monitor the depth of anesthesia, while the influence of age should not be considered when using slow wave power and approximate entropy to monitor the depth of anesthesia.</p>\",\"PeriodicalId\":10682,\"journal\":{\"name\":\"Clinical EEG and Neuroscience\",\"volume\":\" \",\"pages\":\"651-656\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical EEG and Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/15500594221142680\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/12/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical EEG and Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15500594221142680","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的 基于脑电图推导的麻醉深度监测目前尚未根据年龄进行调整。在此,我们分析了年龄因素对脑电图特征的影响。方法 对 80 名成人进行常规临床麻醉时的额部脑电图进行记录。观察四种麻醉过程中脑电特征与年龄和麻醉的关系。结果 慢波功率、δ功率、双谱指数(BIS)和近似熵可用于区分不同的麻醉状态(P < 0.05)。在深度和极深度麻醉状态下,δ功率随着年龄的增长而下降(P < 0.0001)。在极深麻醉状态下,θ 功率随年龄增长而下降(P < 0.05)。在深度和极深度麻醉状态下,α功率随年龄的增长而下降(P = 0.0002)。在轻度和深度麻醉状态下,β 功率随年龄的增长而下降(P = 0.003)。在深度麻醉状态下,γ 功率随年龄的增长而下降(P = 0.002)。在极深麻醉状态下,置换熵随年龄的增长而显著增加(P = 0.0001)。在极深麻醉状态下,BIS 值随着年龄的增长而增加(P = 0.006)。慢波功率、近似熵和样本熵没有出现与年龄相关的变化。结论 使用 BIS 和 δ 功率监测麻醉深度时应考虑年龄的影响,而使用慢波功率和近似熵监测麻醉深度时不应考虑年龄的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Age-dependent Electroencephalogram Characteristics During Different Levels of Anesthetic Depth.

Objective The monitoring of anesthetic depth based on electroencephalogram derivation is not currently adjusted for age. Here we analyze the influence of age factors on electroencephalogram characteristics. Methods Frontal electroencephalogram recordings were obtained from 80 adults during routine clinical anesthesia. The characteristics of electroencephalogram with age and anesthesia were observed during four kinds of anesthesia. Results The slow wave power, δ power, Bispectral Index (BIS) and approximate entropy can be used to distinguish different states of anesthesia (P < 0.05). In the deep and very deep anesthesia states, δ power decreased with age (P < 0.0001). In the very deep anesthesia state, θ power decreased with age (P < 0.05). In the deep and very deep anesthesia states, α power decreased with age (P = 0.0002). In the light and deep anesthesia states, β power decreased with age (P = 0.003). In the deep anesthesia state, γ power decreased with age (P = 0.002). In the very deep anesthesia state, permutation entropy increased significantly with age (P = 0.0001). In the very deep anesthesia state, BIS value increased with age (P = 0.006). The slow wave power, approximate entropy, and sample entropy did not show age-dependent changes. Conclusions The influence of age should be considered when using BIS and δ power to monitor the depth of anesthesia, while the influence of age should not be considered when using slow wave power and approximate entropy to monitor the depth of anesthesia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clinical EEG and Neuroscience
Clinical EEG and Neuroscience 医学-临床神经学
CiteScore
5.20
自引率
5.00%
发文量
66
审稿时长
>12 weeks
期刊介绍: Clinical EEG and Neuroscience conveys clinically relevant research and development in electroencephalography and neuroscience. Original articles on any aspect of clinical neurophysiology or related work in allied fields are invited for publication.
期刊最新文献
Ikelos-RWA. Validation of an Automatic Tool to Quantify REM Sleep Without Atonia. Age-dependent Electroencephalogram Characteristics During Different Levels of Anesthetic Depth. The Clinical Utility of Finding Unexpected Subclinical Spikes Detected by High-Density EEG During Neurodiagnostic Investigations Comparative Analysis of LORETA Z Score Neurofeedback and Cognitive Rehabilitation on Quality of Life and Response Inhibition in Individuals with Opioid Addiction Deep Learning-Based Artificial Intelligence Can Differentiate Treatment-Resistant and Responsive Depression Cases with High Accuracy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1