Yu Hong, Shiyu Meng, Shouping Wang, Ting Liu, Jiayi Liu
{"title":"乌司他丁减轻青春期小鼠重复氯胺酮暴露诱发的认知障碍。","authors":"Yu Hong, Shiyu Meng, Shouping Wang, Ting Liu, Jiayi Liu","doi":"10.1155/2022/6168284","DOIUrl":null,"url":null,"abstract":"<p><p>Ketamine (KET) is widely used for induction and maintenance of anesthesia, and long-term use is required for treatment of depression patients. Repeated use of KET is associated with mood and memory disorders. Ulinastatin (UTI), a urinary trypsin inhibitor, has been widely undertaken as an anti-inflammatory drug and proved to have neuroprotective effects. The aim of this work was to determine whether prophylactic use of UTI could attenuate KET-induced cognitive impairment. It was found that repetitive KET anesthesia cause cognitive and emotional disorders in adolescent mice in WMZ and OFT test, while UTI pretreatment reversed the poor performance compared to the AK group, and the platform finding time and center crossing time were obviously short in the CK+UTI group (<i>P</i> < 0.05). Our ELISA experiment results discovered that UTI pretreatment reduced the expression levels of IL-1<i>β</i> and IL-6 induced by CK anesthesia compared to AK (<i>P</i> < 0.05). In addition, UTI pretreatment protected the cognitive function by restraining the expression levels of Tau protein, Tau phospho-396 protein, and A<i>β</i> protein in the CK group compared to the AK group in Western blotting (<i>P</i> < 0.05). The results suggested that UTI could act as a new strategy to prevent the neurotoxicity of KET, revealing a significant neuroprotective effect of UTI.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763019/pdf/","citationCount":"1","resultStr":"{\"title\":\"Ulinastatin Alleviates Repetitive Ketamine Exposure-Evoked Cognitive Impairment in Adolescent Mice.\",\"authors\":\"Yu Hong, Shiyu Meng, Shouping Wang, Ting Liu, Jiayi Liu\",\"doi\":\"10.1155/2022/6168284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ketamine (KET) is widely used for induction and maintenance of anesthesia, and long-term use is required for treatment of depression patients. Repeated use of KET is associated with mood and memory disorders. Ulinastatin (UTI), a urinary trypsin inhibitor, has been widely undertaken as an anti-inflammatory drug and proved to have neuroprotective effects. The aim of this work was to determine whether prophylactic use of UTI could attenuate KET-induced cognitive impairment. It was found that repetitive KET anesthesia cause cognitive and emotional disorders in adolescent mice in WMZ and OFT test, while UTI pretreatment reversed the poor performance compared to the AK group, and the platform finding time and center crossing time were obviously short in the CK+UTI group (<i>P</i> < 0.05). Our ELISA experiment results discovered that UTI pretreatment reduced the expression levels of IL-1<i>β</i> and IL-6 induced by CK anesthesia compared to AK (<i>P</i> < 0.05). In addition, UTI pretreatment protected the cognitive function by restraining the expression levels of Tau protein, Tau phospho-396 protein, and A<i>β</i> protein in the CK group compared to the AK group in Western blotting (<i>P</i> < 0.05). The results suggested that UTI could act as a new strategy to prevent the neurotoxicity of KET, revealing a significant neuroprotective effect of UTI.</p>\",\"PeriodicalId\":51299,\"journal\":{\"name\":\"Neural Plasticity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763019/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Plasticity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/6168284\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Plasticity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2022/6168284","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Ulinastatin Alleviates Repetitive Ketamine Exposure-Evoked Cognitive Impairment in Adolescent Mice.
Ketamine (KET) is widely used for induction and maintenance of anesthesia, and long-term use is required for treatment of depression patients. Repeated use of KET is associated with mood and memory disorders. Ulinastatin (UTI), a urinary trypsin inhibitor, has been widely undertaken as an anti-inflammatory drug and proved to have neuroprotective effects. The aim of this work was to determine whether prophylactic use of UTI could attenuate KET-induced cognitive impairment. It was found that repetitive KET anesthesia cause cognitive and emotional disorders in adolescent mice in WMZ and OFT test, while UTI pretreatment reversed the poor performance compared to the AK group, and the platform finding time and center crossing time were obviously short in the CK+UTI group (P < 0.05). Our ELISA experiment results discovered that UTI pretreatment reduced the expression levels of IL-1β and IL-6 induced by CK anesthesia compared to AK (P < 0.05). In addition, UTI pretreatment protected the cognitive function by restraining the expression levels of Tau protein, Tau phospho-396 protein, and Aβ protein in the CK group compared to the AK group in Western blotting (P < 0.05). The results suggested that UTI could act as a new strategy to prevent the neurotoxicity of KET, revealing a significant neuroprotective effect of UTI.
期刊介绍:
Neural Plasticity is an international, interdisciplinary journal dedicated to the publication of articles related to all aspects of neural plasticity, with special emphasis on its functional significance as reflected in behavior and in psychopathology. Neural Plasticity publishes research and review articles from the entire range of relevant disciplines, including basic neuroscience, behavioral neuroscience, cognitive neuroscience, biological psychology, and biological psychiatry.