转录组学分析确定了新的潜在生物标志物,并强调了小鼠朊病毒疾病早期阶段与纤毛相关的生物学过程。

IF 1.9 3区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Prion Pub Date : 2022-12-01 DOI:10.1080/19336896.2022.2095186
Yong-Chan Kim, Byung-Hoon Jeong
{"title":"转录组学分析确定了新的潜在生物标志物,并强调了小鼠朊病毒疾病早期阶段与纤毛相关的生物学过程。","authors":"Yong-Chan Kim,&nbsp;Byung-Hoon Jeong","doi":"10.1080/19336896.2022.2095186","DOIUrl":null,"url":null,"abstract":"<p><p>Prion diseases are fatal and irreversible neurodegenerative diseases induced by the pathogenic form of the prion protein (PrP<sup>Sc</sup>), which is converted from the benign form of the prion protein (PrP<sup>C</sup>). These diseases are characterized by an extended asymptomatic incubation period accompanied by continuous conversion of PrP<sup>C</sup> to PrP<sup>Sc</sup>. However, to date, the mechanism governing the conversion to PrP<sup>Sc</sup> in the initial stages of prion disease has not been fully elucidated. We collected transcriptome data from the hippocampus of wild-type mice and prion-infected mice at 8 weeks post injection from the Gene Expression Omnibus and analysed differentially expressed genes and related signalling biological process using bioinformatic tools. We identified a total of 36 differentially expressed genes, including 22 upregulated genes and 14 downregulated genes. In addition, we identified that the cilium-related biological process was enriched in the early stages of prion disease. Furthermore, up- and down-regulated genes were associated with cilium-related cellular components and synapse-related cellular components, respectively. To the best of our knowledge, our study was the first to observe the upregulation of cilium-related genes in the early stages of prion disease.</p>","PeriodicalId":54585,"journal":{"name":"Prion","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9255203/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transcriptomic analysis identifies novel potential biomarkers and highlights cilium-related biological processes in the early stages of prion disease in mice.\",\"authors\":\"Yong-Chan Kim,&nbsp;Byung-Hoon Jeong\",\"doi\":\"10.1080/19336896.2022.2095186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prion diseases are fatal and irreversible neurodegenerative diseases induced by the pathogenic form of the prion protein (PrP<sup>Sc</sup>), which is converted from the benign form of the prion protein (PrP<sup>C</sup>). These diseases are characterized by an extended asymptomatic incubation period accompanied by continuous conversion of PrP<sup>C</sup> to PrP<sup>Sc</sup>. However, to date, the mechanism governing the conversion to PrP<sup>Sc</sup> in the initial stages of prion disease has not been fully elucidated. We collected transcriptome data from the hippocampus of wild-type mice and prion-infected mice at 8 weeks post injection from the Gene Expression Omnibus and analysed differentially expressed genes and related signalling biological process using bioinformatic tools. We identified a total of 36 differentially expressed genes, including 22 upregulated genes and 14 downregulated genes. In addition, we identified that the cilium-related biological process was enriched in the early stages of prion disease. Furthermore, up- and down-regulated genes were associated with cilium-related cellular components and synapse-related cellular components, respectively. To the best of our knowledge, our study was the first to observe the upregulation of cilium-related genes in the early stages of prion disease.</p>\",\"PeriodicalId\":54585,\"journal\":{\"name\":\"Prion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9255203/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prion\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/19336896.2022.2095186\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prion","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336896.2022.2095186","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

朊病毒疾病是由良性朊病毒蛋白(PrPC)转化而成的致病性朊病毒蛋白(PrPSc)诱发的致死性、不可逆的神经退行性疾病。这些疾病的特点是无症状潜伏期延长,并伴有PrPC向PrPSc的持续转化。然而,迄今为止,在朊病毒疾病的初始阶段控制向PrPSc转化的机制尚未完全阐明。我们收集了野生型小鼠和朊病毒感染小鼠在注射后8周的海马转录组数据,并使用生物信息学工具分析了差异表达基因和相关信号生物学过程。共鉴定出36个差异表达基因,其中上调基因22个,下调基因14个。此外,我们发现纤毛相关的生物学过程在朊病毒疾病的早期阶段丰富。此外,上调和下调基因分别与纤毛相关的细胞成分和突触相关的细胞成分相关。据我们所知,我们的研究是第一个观察到纤毛相关基因在朊病毒疾病早期的上调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transcriptomic analysis identifies novel potential biomarkers and highlights cilium-related biological processes in the early stages of prion disease in mice.

Prion diseases are fatal and irreversible neurodegenerative diseases induced by the pathogenic form of the prion protein (PrPSc), which is converted from the benign form of the prion protein (PrPC). These diseases are characterized by an extended asymptomatic incubation period accompanied by continuous conversion of PrPC to PrPSc. However, to date, the mechanism governing the conversion to PrPSc in the initial stages of prion disease has not been fully elucidated. We collected transcriptome data from the hippocampus of wild-type mice and prion-infected mice at 8 weeks post injection from the Gene Expression Omnibus and analysed differentially expressed genes and related signalling biological process using bioinformatic tools. We identified a total of 36 differentially expressed genes, including 22 upregulated genes and 14 downregulated genes. In addition, we identified that the cilium-related biological process was enriched in the early stages of prion disease. Furthermore, up- and down-regulated genes were associated with cilium-related cellular components and synapse-related cellular components, respectively. To the best of our knowledge, our study was the first to observe the upregulation of cilium-related genes in the early stages of prion disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Prion
Prion 生物-生化与分子生物学
CiteScore
5.20
自引率
4.30%
发文量
13
审稿时长
6-12 weeks
期刊介绍: Prion is the first international peer-reviewed open access journal to focus exclusively on protein folding and misfolding, protein assembly disorders, protein-based and structural inheritance. The goal is to foster communication and rapid exchange of information through timely publication of important results using traditional as well as electronic formats. The overriding criteria for publication in Prion are originality, scientific merit and general interest.
期刊最新文献
A systemic analysis of Creutzfeldt Jakob disease cases in Asia. Mutations in human prion-like domains: pathogenic but not always amyloidogenic. Prion forensics: a multidisciplinary approach to investigate CWD at an illegal deer carcass disposal site. Exploring CJD incidence trends: insights from Slovakia. Unmet needs of biochemical biomarkers for human prion diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1