{"title":"网格蛋白依赖性内吞途径的限制和挫折。","authors":"Julie Bruna-Gauchoux, Guillaume Montagnac","doi":"10.5802/crbiol.88","DOIUrl":null,"url":null,"abstract":"<p><p>Clathrin-dependent endocytosis is the major pathway for the entry of most surface receptors and their ligands. It is controlled by clathrin-coated structures that are endowed with the ability to cluster receptors and locally bend the plasma membrane, leading to the formation of receptor-containing vesicles budding into the cytoplasm. This canonical role of clathrin-coated structures has been repeatedly demonstrated to play a fundamental role in a wide range of aspects of cell physiology. However, it is now clearly established that the ability of clathrin-coated structures to bend the membrane can be disrupted. In addition to chemical or genetic alterations, many environmental conditions can physically prevent or slow membrane deformation and/or budding of clathrin-coated structures. The resulting frustrated endocytosis is not only a passive consequence but serves very specific and important cellular functions. Here we provide a historical perspective as well as a definition of frustrated endocytosis in the clathrin pathway before describing its causes and many functional consequences.</p>","PeriodicalId":55231,"journal":{"name":"Comptes Rendus Biologies","volume":"345 2","pages":"43-56"},"PeriodicalIF":0.7000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constraints and frustration in the clathrin-dependent endocytosis pathway.\",\"authors\":\"Julie Bruna-Gauchoux, Guillaume Montagnac\",\"doi\":\"10.5802/crbiol.88\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clathrin-dependent endocytosis is the major pathway for the entry of most surface receptors and their ligands. It is controlled by clathrin-coated structures that are endowed with the ability to cluster receptors and locally bend the plasma membrane, leading to the formation of receptor-containing vesicles budding into the cytoplasm. This canonical role of clathrin-coated structures has been repeatedly demonstrated to play a fundamental role in a wide range of aspects of cell physiology. However, it is now clearly established that the ability of clathrin-coated structures to bend the membrane can be disrupted. In addition to chemical or genetic alterations, many environmental conditions can physically prevent or slow membrane deformation and/or budding of clathrin-coated structures. The resulting frustrated endocytosis is not only a passive consequence but serves very specific and important cellular functions. Here we provide a historical perspective as well as a definition of frustrated endocytosis in the clathrin pathway before describing its causes and many functional consequences.</p>\",\"PeriodicalId\":55231,\"journal\":{\"name\":\"Comptes Rendus Biologies\",\"volume\":\"345 2\",\"pages\":\"43-56\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Biologies\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.5802/crbiol.88\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Biologies","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5802/crbiol.88","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOLOGY","Score":null,"Total":0}
Constraints and frustration in the clathrin-dependent endocytosis pathway.
Clathrin-dependent endocytosis is the major pathway for the entry of most surface receptors and their ligands. It is controlled by clathrin-coated structures that are endowed with the ability to cluster receptors and locally bend the plasma membrane, leading to the formation of receptor-containing vesicles budding into the cytoplasm. This canonical role of clathrin-coated structures has been repeatedly demonstrated to play a fundamental role in a wide range of aspects of cell physiology. However, it is now clearly established that the ability of clathrin-coated structures to bend the membrane can be disrupted. In addition to chemical or genetic alterations, many environmental conditions can physically prevent or slow membrane deformation and/or budding of clathrin-coated structures. The resulting frustrated endocytosis is not only a passive consequence but serves very specific and important cellular functions. Here we provide a historical perspective as well as a definition of frustrated endocytosis in the clathrin pathway before describing its causes and many functional consequences.
期刊介绍:
The Comptes rendus Biologies publish monthly communications dealing with all biological and medical research fields (biological modelling, development and reproduction biology, cell biology, biochemistry, neurosciences, immunology, pharmacology, ecology, etc.).
Articles are preferably written in English. Articles in French with an abstract in English are accepted.