Marianne Bengtson Løvendorf, Anja Holm, Andreas Petri, Charlotte Albæk Thrue, Shizuka Uchida, Morten T Venø, Sakari Kauppinen
{"title":"利用rna修饰的反义寡核苷酸敲低环状rna。","authors":"Marianne Bengtson Løvendorf, Anja Holm, Andreas Petri, Charlotte Albæk Thrue, Shizuka Uchida, Morten T Venø, Sakari Kauppinen","doi":"10.1089/nat.2022.0040","DOIUrl":null,"url":null,"abstract":"<p><p>Circular RNAs (circRNAs) constitute an abundant class of covalently closed noncoding RNA molecules that are formed by backsplicing from eukaryotic protein-coding genes. Recent studies have shown that circRNAs can act as microRNA or protein decoys, as well as transcriptional regulators. However, the functions of most circRNAs are still poorly understood. Because circRNA sequences overlap with their linear parent transcripts, depleting specific circRNAs without affecting host gene expression remains a challenge. In this study, we assessed the utility of LNA-modified antisense oligonucleotides (ASOs) to knock down circRNAs for loss-of-function studies. We found that, while most RNase H-dependent gapmer ASOs mediate effective knockdown of their target circRNAs, some gapmers reduce the levels of the linear parent transcript. The circRNA targeting specificity can be enhanced using design-optimized gapmer ASOs, which display potent and specific circRNA knockdown with a minimal effect on the host genes. In summary, our results demonstrate that LNA-modified ASOs complementary to backsplice-junction sequences mediate robust knockdown of circRNAs <i>in vitro</i> and, thus, represent a useful tool to explore the biological roles of circRNAs in loss-of-function studies in cultured cells and animal models.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":"33 1","pages":"45-57"},"PeriodicalIF":4.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Knockdown of Circular RNAs Using LNA-Modified Antisense Oligonucleotides.\",\"authors\":\"Marianne Bengtson Løvendorf, Anja Holm, Andreas Petri, Charlotte Albæk Thrue, Shizuka Uchida, Morten T Venø, Sakari Kauppinen\",\"doi\":\"10.1089/nat.2022.0040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Circular RNAs (circRNAs) constitute an abundant class of covalently closed noncoding RNA molecules that are formed by backsplicing from eukaryotic protein-coding genes. Recent studies have shown that circRNAs can act as microRNA or protein decoys, as well as transcriptional regulators. However, the functions of most circRNAs are still poorly understood. Because circRNA sequences overlap with their linear parent transcripts, depleting specific circRNAs without affecting host gene expression remains a challenge. In this study, we assessed the utility of LNA-modified antisense oligonucleotides (ASOs) to knock down circRNAs for loss-of-function studies. We found that, while most RNase H-dependent gapmer ASOs mediate effective knockdown of their target circRNAs, some gapmers reduce the levels of the linear parent transcript. The circRNA targeting specificity can be enhanced using design-optimized gapmer ASOs, which display potent and specific circRNA knockdown with a minimal effect on the host genes. In summary, our results demonstrate that LNA-modified ASOs complementary to backsplice-junction sequences mediate robust knockdown of circRNAs <i>in vitro</i> and, thus, represent a useful tool to explore the biological roles of circRNAs in loss-of-function studies in cultured cells and animal models.</p>\",\"PeriodicalId\":19412,\"journal\":{\"name\":\"Nucleic acid therapeutics\",\"volume\":\"33 1\",\"pages\":\"45-57\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic acid therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/nat.2022.0040\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic acid therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/nat.2022.0040","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Knockdown of Circular RNAs Using LNA-Modified Antisense Oligonucleotides.
Circular RNAs (circRNAs) constitute an abundant class of covalently closed noncoding RNA molecules that are formed by backsplicing from eukaryotic protein-coding genes. Recent studies have shown that circRNAs can act as microRNA or protein decoys, as well as transcriptional regulators. However, the functions of most circRNAs are still poorly understood. Because circRNA sequences overlap with their linear parent transcripts, depleting specific circRNAs without affecting host gene expression remains a challenge. In this study, we assessed the utility of LNA-modified antisense oligonucleotides (ASOs) to knock down circRNAs for loss-of-function studies. We found that, while most RNase H-dependent gapmer ASOs mediate effective knockdown of their target circRNAs, some gapmers reduce the levels of the linear parent transcript. The circRNA targeting specificity can be enhanced using design-optimized gapmer ASOs, which display potent and specific circRNA knockdown with a minimal effect on the host genes. In summary, our results demonstrate that LNA-modified ASOs complementary to backsplice-junction sequences mediate robust knockdown of circRNAs in vitro and, thus, represent a useful tool to explore the biological roles of circRNAs in loss-of-function studies in cultured cells and animal models.
期刊介绍:
Nucleic Acid Therapeutics is the leading journal in its field focusing on cutting-edge basic research, therapeutic applications, and drug development using nucleic acids or related compounds to alter gene expression. The Journal examines many new approaches for using nucleic acids as therapeutic agents or in modifying nucleic acids for therapeutic purposes including: oligonucleotides, gene modification, aptamers, RNA nanoparticles, and ribozymes.