老玩家,合适的利基市场。

IF 1.5 Q3 HEMATOLOGY 血液科学(英文) Pub Date : 2022-04-01 DOI:10.1097/BS9.0000000000000105
Cheng Cheng Zhang
{"title":"老玩家,合适的利基市场。","authors":"Cheng Cheng Zhang","doi":"10.1097/BS9.0000000000000105","DOIUrl":null,"url":null,"abstract":"The cellular and molecular components of the niche for hematopoietic stem cells (HSCs) are still not well de fi ned. Angiopoietin-like proteins (Angptls) are a group of secreted glycoproteins that have been reported to play various roles, including the regulation of HSC activity. 1 Speci fi cally, Angptl2, a member of the Angptl family, was demonstrated to support HSC stemness through binding to inhibitory receptors. 2 Angptl2 has also been shown to support HSC activity in exosomes. 3 However, whether and how Angptl2 regulates HSC activities in the HSC niche were still unknown. Yu et al used an elegant approach to study these questions. 1 Based on the expression pattern of Angptl2 in bone marrow, several conditional knockout (KO) mice were generated to deplete Angptl2 from endothelial, mesenchymal stromal cells, megakaryocytes, and HSCs. Using a number of functional assays, including reconstitution analysis, fl ow cytometry, and immuno fl uorescence microscopy, the authors discovered that only endothelial cell-derived Angptl2 but not Angptl2 from other niche cell types supported the repopulation capacity, quiescent status, and niche localization of HSCs. They further demonstrated that Angptl2 enhances peroxisome-proliferator-activated receptor D expression to transactivate G0s2 and sustain the perinuclear localization of nucleolin that prevents HSCs from entering the cell cycle. study HSCs","PeriodicalId":67343,"journal":{"name":"血液科学(英文)","volume":"4 2","pages":"99"},"PeriodicalIF":1.5000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e3/fd/bls-4-99.PMC9354721.pdf","citationCount":"0","resultStr":"{\"title\":\"An old player, the right niche.\",\"authors\":\"Cheng Cheng Zhang\",\"doi\":\"10.1097/BS9.0000000000000105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cellular and molecular components of the niche for hematopoietic stem cells (HSCs) are still not well de fi ned. Angiopoietin-like proteins (Angptls) are a group of secreted glycoproteins that have been reported to play various roles, including the regulation of HSC activity. 1 Speci fi cally, Angptl2, a member of the Angptl family, was demonstrated to support HSC stemness through binding to inhibitory receptors. 2 Angptl2 has also been shown to support HSC activity in exosomes. 3 However, whether and how Angptl2 regulates HSC activities in the HSC niche were still unknown. Yu et al used an elegant approach to study these questions. 1 Based on the expression pattern of Angptl2 in bone marrow, several conditional knockout (KO) mice were generated to deplete Angptl2 from endothelial, mesenchymal stromal cells, megakaryocytes, and HSCs. Using a number of functional assays, including reconstitution analysis, fl ow cytometry, and immuno fl uorescence microscopy, the authors discovered that only endothelial cell-derived Angptl2 but not Angptl2 from other niche cell types supported the repopulation capacity, quiescent status, and niche localization of HSCs. They further demonstrated that Angptl2 enhances peroxisome-proliferator-activated receptor D expression to transactivate G0s2 and sustain the perinuclear localization of nucleolin that prevents HSCs from entering the cell cycle. study HSCs\",\"PeriodicalId\":67343,\"journal\":{\"name\":\"血液科学(英文)\",\"volume\":\"4 2\",\"pages\":\"99\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e3/fd/bls-4-99.PMC9354721.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"血液科学(英文)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1097/BS9.0000000000000105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"血液科学(英文)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/BS9.0000000000000105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An old player, the right niche.
The cellular and molecular components of the niche for hematopoietic stem cells (HSCs) are still not well de fi ned. Angiopoietin-like proteins (Angptls) are a group of secreted glycoproteins that have been reported to play various roles, including the regulation of HSC activity. 1 Speci fi cally, Angptl2, a member of the Angptl family, was demonstrated to support HSC stemness through binding to inhibitory receptors. 2 Angptl2 has also been shown to support HSC activity in exosomes. 3 However, whether and how Angptl2 regulates HSC activities in the HSC niche were still unknown. Yu et al used an elegant approach to study these questions. 1 Based on the expression pattern of Angptl2 in bone marrow, several conditional knockout (KO) mice were generated to deplete Angptl2 from endothelial, mesenchymal stromal cells, megakaryocytes, and HSCs. Using a number of functional assays, including reconstitution analysis, fl ow cytometry, and immuno fl uorescence microscopy, the authors discovered that only endothelial cell-derived Angptl2 but not Angptl2 from other niche cell types supported the repopulation capacity, quiescent status, and niche localization of HSCs. They further demonstrated that Angptl2 enhances peroxisome-proliferator-activated receptor D expression to transactivate G0s2 and sustain the perinuclear localization of nucleolin that prevents HSCs from entering the cell cycle. study HSCs
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
MicroRNAs: discovery, breakthrough, and innovation. Dynamic frailty-tailored therapy (DynaFiT): A proof-of-concept study in elderly patients with newly diagnosed multiple myeloma. Pre-transplantation levels of lysine (K)-specific methyltransferase 2A (KMT2A) partial tandem duplications can predict relapse of acute myeloid leukemia patients following haploidentical donor hematopoietic stem cell transplantation. Dual role of BCL11B in T-cell malignancies. Epigenetic modifications in hematopoietic ecosystem: a key tuner from homeostasis to acute myeloid leukemia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1