{"title":"T2K实验的新结果","authors":"A. Hillairet, T2K collaboration","doi":"10.1016/j.nuclphysbps.2014.09.035","DOIUrl":null,"url":null,"abstract":"<div><p>Since its discovery, neutrino oscillation has been the subject of intense research. The <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>13</mn></mrow></msub></math></span> parameter of the neutrino mixing matrix is of particular importance. A non-zero <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>13</mn></mrow></msub></math></span> opens the possibility to study CP violation in the neutrino sector which could help explain the matter anti-matter asymmetry in the Universe. The Tokai-To-Kamioka (T2K) experiment was designed to measure electron neutrino appearance and muon neutrino disappearance using a muon neutrino beam produced at the J-PARC facility in Tokai, Japan. The Super-Kamiokande detector, located 295 km from the neutrino source, acts as the far detector. An improved analysis and all the data taken through June 9, 2012 provide 11 electron neutrino candidates in the far detector corresponding to 3.1 standard deviations from the <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>13</mn></mrow></msub><mo>=</mo><mn>0</mn></math></span> hypothesis. This excess is currently the strongest indication of electron neutrino appearance and it yields for normal hierarchy and <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>C</mi><mi>P</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span>, <span><math><mn>0.053</mn><mo><</mo><msup><mrow><mi>sin</mi></mrow><mrow><mn>2</mn></mrow></msup><mo></mo><mn>2</mn><msub><mrow><mi>θ</mi></mrow><mrow><mn>13</mn></mrow></msub><mo><</mo><mn>0.141</mn></math></span> at 68% confidence level.</p></div>","PeriodicalId":93343,"journal":{"name":"Nuclear physics. B, Proceedings, supplements","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.nuclphysbps.2014.09.035","citationCount":"1","resultStr":"{\"title\":\"New results from the T2K experiment\",\"authors\":\"A. Hillairet, T2K collaboration\",\"doi\":\"10.1016/j.nuclphysbps.2014.09.035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Since its discovery, neutrino oscillation has been the subject of intense research. The <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>13</mn></mrow></msub></math></span> parameter of the neutrino mixing matrix is of particular importance. A non-zero <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>13</mn></mrow></msub></math></span> opens the possibility to study CP violation in the neutrino sector which could help explain the matter anti-matter asymmetry in the Universe. The Tokai-To-Kamioka (T2K) experiment was designed to measure electron neutrino appearance and muon neutrino disappearance using a muon neutrino beam produced at the J-PARC facility in Tokai, Japan. The Super-Kamiokande detector, located 295 km from the neutrino source, acts as the far detector. An improved analysis and all the data taken through June 9, 2012 provide 11 electron neutrino candidates in the far detector corresponding to 3.1 standard deviations from the <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>13</mn></mrow></msub><mo>=</mo><mn>0</mn></math></span> hypothesis. This excess is currently the strongest indication of electron neutrino appearance and it yields for normal hierarchy and <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>C</mi><mi>P</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span>, <span><math><mn>0.053</mn><mo><</mo><msup><mrow><mi>sin</mi></mrow><mrow><mn>2</mn></mrow></msup><mo></mo><mn>2</mn><msub><mrow><mi>θ</mi></mrow><mrow><mn>13</mn></mrow></msub><mo><</mo><mn>0.141</mn></math></span> at 68% confidence level.</p></div>\",\"PeriodicalId\":93343,\"journal\":{\"name\":\"Nuclear physics. B, Proceedings, supplements\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.nuclphysbps.2014.09.035\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear physics. B, Proceedings, supplements\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920563214001662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear physics. B, Proceedings, supplements","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920563214001662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
自发现以来,中微子振荡一直是研究的热点。中微子混合矩阵的θ13参数特别重要。非零θ13开启了研究中微子扇区CP违逆的可能性,这有助于解释宇宙中的物质反物质不对称。Tokai- to - kamioka (T2K)实验旨在利用日本东海J-PARC设施产生的μ子中微子束来测量电子中微子的出现和μ子中微子的消失。位于距离中微子源295公里处的超级神冈探测器充当远端探测器。经过改进的分析和2012年6月9日之前采集的所有数据显示,远端探测器中有11个电子中微子候选者,与θ13=0假设的标准差相差3.1。这种过剩目前是电子中微子出现的最强指示,它产生了正常的层次和δCP= 0,0.053 <sin2²θ13<0.141,在68%的置信水平上。
Since its discovery, neutrino oscillation has been the subject of intense research. The parameter of the neutrino mixing matrix is of particular importance. A non-zero opens the possibility to study CP violation in the neutrino sector which could help explain the matter anti-matter asymmetry in the Universe. The Tokai-To-Kamioka (T2K) experiment was designed to measure electron neutrino appearance and muon neutrino disappearance using a muon neutrino beam produced at the J-PARC facility in Tokai, Japan. The Super-Kamiokande detector, located 295 km from the neutrino source, acts as the far detector. An improved analysis and all the data taken through June 9, 2012 provide 11 electron neutrino candidates in the far detector corresponding to 3.1 standard deviations from the hypothesis. This excess is currently the strongest indication of electron neutrino appearance and it yields for normal hierarchy and , at 68% confidence level.