{"title":"三酰基甘油和DGAT1抑制剂在治疗结核分枝杆菌中的作用","authors":"Alice R. Moorey, Gurdyal S. Besra","doi":"10.1016/j.tcsw.2022.100083","DOIUrl":null,"url":null,"abstract":"<div><p>Latent tuberculosis poses a significant threat to global health through the incubation of undiagnosed infections within the community, and through its tolerance to antibiotics. This Special Features article explores the mechanisms by which the dormant <em>Mycobacterium tuberculosis</em> pathogen can store energy in the form of lipid inclusion bodies and triacylglycerols, which may be key in the development of novel therapeutics to treat TB.</p></div>","PeriodicalId":36539,"journal":{"name":"Cell Surface","volume":"8 ","pages":"Article 100083"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9578982/pdf/","citationCount":"0","resultStr":"{\"title\":\"The role of triacylglycerols and repurposing DGAT1 inhibitors for the treatment of Mycobacterium tuberculosis\",\"authors\":\"Alice R. Moorey, Gurdyal S. Besra\",\"doi\":\"10.1016/j.tcsw.2022.100083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Latent tuberculosis poses a significant threat to global health through the incubation of undiagnosed infections within the community, and through its tolerance to antibiotics. This Special Features article explores the mechanisms by which the dormant <em>Mycobacterium tuberculosis</em> pathogen can store energy in the form of lipid inclusion bodies and triacylglycerols, which may be key in the development of novel therapeutics to treat TB.</p></div>\",\"PeriodicalId\":36539,\"journal\":{\"name\":\"Cell Surface\",\"volume\":\"8 \",\"pages\":\"Article 100083\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9578982/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Surface\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468233022000123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Surface","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468233022000123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
The role of triacylglycerols and repurposing DGAT1 inhibitors for the treatment of Mycobacterium tuberculosis
Latent tuberculosis poses a significant threat to global health through the incubation of undiagnosed infections within the community, and through its tolerance to antibiotics. This Special Features article explores the mechanisms by which the dormant Mycobacterium tuberculosis pathogen can store energy in the form of lipid inclusion bodies and triacylglycerols, which may be key in the development of novel therapeutics to treat TB.