老年常压脑积水啮齿动物模型。

IF 1.4 Q2 MEDICINE, GENERAL & INTERNAL Tzu Chi Medical Journal Pub Date : 2023-01-01 DOI:10.4103/tcmj.tcmj_120_22
Li-Jin Chen, Sheng-Tzung Tsai, Guo-Fang Tseng
{"title":"老年常压脑积水啮齿动物模型。","authors":"Li-Jin Chen,&nbsp;Sheng-Tzung Tsai,&nbsp;Guo-Fang Tseng","doi":"10.4103/tcmj.tcmj_120_22","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebrospinal fluid (CSF) and its drainage are crucial in clearing metabolic waste and maintaining the microenvironment of the central nervous system for proper functioning. Normal-pressure hydrocephalus (NPH) is a serious neurological disorder of the elderly with obstruction of CSF flow outside the cerebral ventricles, causing ventriculomegaly. The stasis of CSF in NPH compromises brain functioning. Although treatable, often with shunt implantation for drainage, the outcome depends highly on early diagnosis, which, however, is challenging. The initial symptoms of NPH are hard to be aware of and the complete symptoms overlap with those of other neurological diseases. Ventriculomegaly is not specific to NPH as well. The lack of knowledge on the initial stages in its development and throughout its progression further deters early diagnosis. Thus, we are in dire need for an appropriate animal model for researches into a more thorough understanding of its development and pathophysiology so that we can enhance the diagnosis and therapeutic strategies to improve the prognosis of NPH following treatment. With this, we review the few currently available experimental rodent NPH models for these animals are smaller in sizes, easier in maintenance, and having a rapid life cycle. Among these, a parietal convexity subarachnoid space kaolin injection adult rat model appears promising as it shows a slow onset of ventriculomegaly in association with cognitive and motor disabilities resembling the elderly NPH in humans.</p>","PeriodicalId":45873,"journal":{"name":"Tzu Chi Medical Journal","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/61/81/TCMJ-35-18.PMC9972929.pdf","citationCount":"0","resultStr":"{\"title\":\"Rodent models of senile normal-pressure hydrocephalus.\",\"authors\":\"Li-Jin Chen,&nbsp;Sheng-Tzung Tsai,&nbsp;Guo-Fang Tseng\",\"doi\":\"10.4103/tcmj.tcmj_120_22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cerebrospinal fluid (CSF) and its drainage are crucial in clearing metabolic waste and maintaining the microenvironment of the central nervous system for proper functioning. Normal-pressure hydrocephalus (NPH) is a serious neurological disorder of the elderly with obstruction of CSF flow outside the cerebral ventricles, causing ventriculomegaly. The stasis of CSF in NPH compromises brain functioning. Although treatable, often with shunt implantation for drainage, the outcome depends highly on early diagnosis, which, however, is challenging. The initial symptoms of NPH are hard to be aware of and the complete symptoms overlap with those of other neurological diseases. Ventriculomegaly is not specific to NPH as well. The lack of knowledge on the initial stages in its development and throughout its progression further deters early diagnosis. Thus, we are in dire need for an appropriate animal model for researches into a more thorough understanding of its development and pathophysiology so that we can enhance the diagnosis and therapeutic strategies to improve the prognosis of NPH following treatment. With this, we review the few currently available experimental rodent NPH models for these animals are smaller in sizes, easier in maintenance, and having a rapid life cycle. Among these, a parietal convexity subarachnoid space kaolin injection adult rat model appears promising as it shows a slow onset of ventriculomegaly in association with cognitive and motor disabilities resembling the elderly NPH in humans.</p>\",\"PeriodicalId\":45873,\"journal\":{\"name\":\"Tzu Chi Medical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/61/81/TCMJ-35-18.PMC9972929.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tzu Chi Medical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/tcmj.tcmj_120_22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tzu Chi Medical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/tcmj.tcmj_120_22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

脑脊液(CSF)及其排泄对于清除代谢废物和维持中枢神经系统正常运作的微环境至关重要。常压脑积水(NPH)是一种严重的老年人神经系统疾病,脑室外脑脊液流动受阻,导致脑室肿大。脑脊液在NPH中的停滞会损害大脑功能。虽然可以治疗,通常通过分流管植入引流,但结果高度依赖于早期诊断,然而,这是具有挑战性的。NPH的初始症状难以察觉,其完整症状与其他神经系统疾病的症状重叠。脑室增大也不是NPH所特有的。缺乏对其发展的最初阶段和整个发展过程的了解进一步阻碍了早期诊断。因此,我们迫切需要一种合适的动物模型进行研究,以更深入地了解其发展和病理生理,从而提高诊断和治疗策略,改善NPH治疗后的预后。在此基础上,我们回顾了目前可用的几种实验性啮齿动物NPH模型,这些模型具有体积较小、易于维护和生命周期快的特点。其中,顶凸蛛网膜下腔高岭土注射成年大鼠模型看起来很有希望,因为它显示了与认知和运动障碍相关的脑室肿大的缓慢发作,类似于人类老年NPH。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rodent models of senile normal-pressure hydrocephalus.

Cerebrospinal fluid (CSF) and its drainage are crucial in clearing metabolic waste and maintaining the microenvironment of the central nervous system for proper functioning. Normal-pressure hydrocephalus (NPH) is a serious neurological disorder of the elderly with obstruction of CSF flow outside the cerebral ventricles, causing ventriculomegaly. The stasis of CSF in NPH compromises brain functioning. Although treatable, often with shunt implantation for drainage, the outcome depends highly on early diagnosis, which, however, is challenging. The initial symptoms of NPH are hard to be aware of and the complete symptoms overlap with those of other neurological diseases. Ventriculomegaly is not specific to NPH as well. The lack of knowledge on the initial stages in its development and throughout its progression further deters early diagnosis. Thus, we are in dire need for an appropriate animal model for researches into a more thorough understanding of its development and pathophysiology so that we can enhance the diagnosis and therapeutic strategies to improve the prognosis of NPH following treatment. With this, we review the few currently available experimental rodent NPH models for these animals are smaller in sizes, easier in maintenance, and having a rapid life cycle. Among these, a parietal convexity subarachnoid space kaolin injection adult rat model appears promising as it shows a slow onset of ventriculomegaly in association with cognitive and motor disabilities resembling the elderly NPH in humans.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tzu Chi Medical Journal
Tzu Chi Medical Journal MEDICINE, GENERAL & INTERNAL-
CiteScore
3.40
自引率
0.00%
发文量
44
审稿时长
13 weeks
期刊介绍: The Tzu Chi Medical Journal is the peer-reviewed publication of the Buddhist Compassion Relief Tzu Chi Foundation, and includes original research papers on clinical medicine and basic science, case reports, clinical pathological pages, and review articles.
期刊最新文献
Epigenetic modification in radiotherapy and immunotherapy for cancers. Natural phytochemicals as small-molecule proprotein convertase subtilisin/kexin type 9 inhibitors. The obesity paradox exists in Asia: A systematic review and meta-analysis of body mass index effects on clinical outcomes following percutaneous coronary intervention in Asia. Unraveling the interplay between inflammation and stem cell mobilization or homing: Implications for tissue repair and therapeutics. Evaluating the efficacy of pars plana vitrectomy in the management of endophthalmitis after following the endophthalmitis vitrectomy study: A systematic review and meta-analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1