基于关注的医学图像分类进化网络。

IF 6.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Neural Systems Pub Date : 2023-03-01 DOI:10.1142/S0129065723500107
Hengde Zhu, Jian Wang, Shui-Hua Wang, Rajeev Raman, Juan M Górriz, Yu-Dong Zhang
{"title":"基于关注的医学图像分类进化网络。","authors":"Hengde Zhu,&nbsp;Jian Wang,&nbsp;Shui-Hua Wang,&nbsp;Rajeev Raman,&nbsp;Juan M Górriz,&nbsp;Yu-Dong Zhang","doi":"10.1142/S0129065723500107","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning has become a primary choice in medical image analysis due to its powerful representation capability. However, most existing deep learning models designed for medical image classification can only perform well on a specific disease. The performance drops dramatically when it comes to other diseases. Generalizability remains a challenging problem. In this paper, we propose an evolutionary attention-based network (EDCA-Net), which is an effective and robust network for medical image classification tasks. To extract task-related features from a given medical dataset, we first propose the densely connected attentional network (DCA-Net) where feature maps are automatically channel-wise weighted, and the dense connectivity pattern is introduced to improve the efficiency of information flow. To improve the model capability and generalizability, we introduce two types of evolution: intra- and inter-evolution. The intra-evolution optimizes the weights of DCA-Net, while the inter-evolution allows two instances of DCA-Net to exchange training experience during training. The evolutionary DCA-Net is referred to as EDCA-Net. The EDCA-Net is evaluated on four publicly accessible medical datasets of different diseases. Experiments showed that the EDCA-Net outperforms the state-of-the-art methods on three datasets and achieves comparable performance on the last dataset, demonstrating good generalizability for medical image classification.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":"33 3","pages":"2350010"},"PeriodicalIF":6.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An Evolutionary Attention-Based Network for Medical Image Classification.\",\"authors\":\"Hengde Zhu,&nbsp;Jian Wang,&nbsp;Shui-Hua Wang,&nbsp;Rajeev Raman,&nbsp;Juan M Górriz,&nbsp;Yu-Dong Zhang\",\"doi\":\"10.1142/S0129065723500107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deep learning has become a primary choice in medical image analysis due to its powerful representation capability. However, most existing deep learning models designed for medical image classification can only perform well on a specific disease. The performance drops dramatically when it comes to other diseases. Generalizability remains a challenging problem. In this paper, we propose an evolutionary attention-based network (EDCA-Net), which is an effective and robust network for medical image classification tasks. To extract task-related features from a given medical dataset, we first propose the densely connected attentional network (DCA-Net) where feature maps are automatically channel-wise weighted, and the dense connectivity pattern is introduced to improve the efficiency of information flow. To improve the model capability and generalizability, we introduce two types of evolution: intra- and inter-evolution. The intra-evolution optimizes the weights of DCA-Net, while the inter-evolution allows two instances of DCA-Net to exchange training experience during training. The evolutionary DCA-Net is referred to as EDCA-Net. The EDCA-Net is evaluated on four publicly accessible medical datasets of different diseases. Experiments showed that the EDCA-Net outperforms the state-of-the-art methods on three datasets and achieves comparable performance on the last dataset, demonstrating good generalizability for medical image classification.</p>\",\"PeriodicalId\":50305,\"journal\":{\"name\":\"International Journal of Neural Systems\",\"volume\":\"33 3\",\"pages\":\"2350010\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065723500107\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065723500107","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 5

摘要

深度学习以其强大的表征能力成为医学图像分析的首选。然而,大多数现有的用于医学图像分类的深度学习模型只能在特定疾病上表现良好。当涉及到其他疾病时,这种表现会急剧下降。概括性仍然是一个具有挑战性的问题。在本文中,我们提出了一种基于进化注意力的网络(EDCA-Net),它是一种有效的、鲁棒的医学图像分类网络。为了从给定的医疗数据集中提取任务相关特征,我们首先提出了密集连接注意网络(DCA-Net),其中特征映射自动按通道加权,并引入密集连接模式以提高信息流的效率。为了提高模型的能力和可泛化性,我们引入了内部进化和内部进化两种类型的进化。内部进化优化了DCA-Net的权重,而内部进化允许两个DCA-Net实例在训练过程中交换训练经验。演进的DCA-Net被称为EDCA-Net。EDCA-Net在四个可公开访问的不同疾病的医疗数据集上进行评估。实验表明,EDCA-Net在三个数据集上的性能都优于现有的方法,在最后一个数据集上也取得了相当的性能,显示了良好的医学图像分类泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Evolutionary Attention-Based Network for Medical Image Classification.

Deep learning has become a primary choice in medical image analysis due to its powerful representation capability. However, most existing deep learning models designed for medical image classification can only perform well on a specific disease. The performance drops dramatically when it comes to other diseases. Generalizability remains a challenging problem. In this paper, we propose an evolutionary attention-based network (EDCA-Net), which is an effective and robust network for medical image classification tasks. To extract task-related features from a given medical dataset, we first propose the densely connected attentional network (DCA-Net) where feature maps are automatically channel-wise weighted, and the dense connectivity pattern is introduced to improve the efficiency of information flow. To improve the model capability and generalizability, we introduce two types of evolution: intra- and inter-evolution. The intra-evolution optimizes the weights of DCA-Net, while the inter-evolution allows two instances of DCA-Net to exchange training experience during training. The evolutionary DCA-Net is referred to as EDCA-Net. The EDCA-Net is evaluated on four publicly accessible medical datasets of different diseases. Experiments showed that the EDCA-Net outperforms the state-of-the-art methods on three datasets and achieves comparable performance on the last dataset, demonstrating good generalizability for medical image classification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Neural Systems
International Journal of Neural Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
28.80%
发文量
116
审稿时长
24 months
期刊介绍: The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.
期刊最新文献
Epileptic Seizure Detection with an End-to-end Temporal Convolutional Network and Bidirectional Long Short-Term Memory Model A graph-based neural approach to linear sum assignment problems Automated Quality Evaluation of Large-Scale Benchmark Datasets for Vision-Language Tasks sEMG-based Inter-Session Hand Gesture Recognition via Domain Adaptation with Locality Preserving and Maximum Margin Cultural Differences in the Assessment of Synthetic Voices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1