Kjersti Oppen, Cato Brede, Øyvind Skadberg, Trude Steinsvik, Jan Cato Holter, Annika E Michelsen, Lars Heggelund
{"title":"肺炎中Hepcidin的分析:免疫测定法和LC-MS/MS法的比较。","authors":"Kjersti Oppen, Cato Brede, Øyvind Skadberg, Trude Steinsvik, Jan Cato Holter, Annika E Michelsen, Lars Heggelund","doi":"10.1177/00045632231159529","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The iron-regulatory hormone hepcidin is a promising biomarker to differentiate anaemia of inflammation from iron deficiency. Plasma hepcidin concentrations increase substantially during inflammation, and the amount of smaller, non-biologically active isoforms of hepcidin increase in inflammatory conditions. These smaller isoforms are measured in some, but not all analytical methods. Thus, we evaluated the comparability of two analytical methods with different isoform selectivity during and after acute-phase pneumonia as a highly inflammatory model disease.</p><p><strong>Methods: </strong>Blood samples from a cohort of 267 hospitalized community-acquired pneumonia patients collected at admission and a 6-week follow-up were analysed. Hepcidin was measured in plasma by an immunoassay, which recognizes all hepcidin isoforms, and a liquid chromatography tandem mass spectrometry (LC-MS/MS), which selectively measures the bioactive hepcidin-25. Additionally, a subset of serum samples was analysed by LC-MS/MS.</p><p><strong>Results: </strong>Hepcidin measurements by immunoassay were higher compared with LC-MS/MS. The relative mean difference of hepcidin plasma concentrations between the two analytical methods was larger in admission samples than in follow-up samples (admission samples <200 ng/mL: 37%, admission samples >200 ng/mL: 78%, follow-up samples >10 ng/mL: 22%). During acute-phase pneumonia, serum concentrations were on average 22% lower than plasma concentrations when measured by LC-MS/MS.</p><p><strong>Conclusions: </strong>Immunoassay measured higher hepcidin concentrations compared with LC-MS/MS, with more pronounced differences in high-concentration samples during acute-phase pneumonia. These findings should be considered in local method validations and in future harmonization and standardization optimization of hepcidin measurements.</p>","PeriodicalId":8005,"journal":{"name":"Annals of Clinical Biochemistry","volume":" ","pages":"298-305"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ef/a9/10.1177_00045632231159529.PMC10552342.pdf","citationCount":"0","resultStr":"{\"title\":\"Hepcidin analysis in pneumonia: Comparison of immunoassay and LC-MS/MS.\",\"authors\":\"Kjersti Oppen, Cato Brede, Øyvind Skadberg, Trude Steinsvik, Jan Cato Holter, Annika E Michelsen, Lars Heggelund\",\"doi\":\"10.1177/00045632231159529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The iron-regulatory hormone hepcidin is a promising biomarker to differentiate anaemia of inflammation from iron deficiency. Plasma hepcidin concentrations increase substantially during inflammation, and the amount of smaller, non-biologically active isoforms of hepcidin increase in inflammatory conditions. These smaller isoforms are measured in some, but not all analytical methods. Thus, we evaluated the comparability of two analytical methods with different isoform selectivity during and after acute-phase pneumonia as a highly inflammatory model disease.</p><p><strong>Methods: </strong>Blood samples from a cohort of 267 hospitalized community-acquired pneumonia patients collected at admission and a 6-week follow-up were analysed. Hepcidin was measured in plasma by an immunoassay, which recognizes all hepcidin isoforms, and a liquid chromatography tandem mass spectrometry (LC-MS/MS), which selectively measures the bioactive hepcidin-25. Additionally, a subset of serum samples was analysed by LC-MS/MS.</p><p><strong>Results: </strong>Hepcidin measurements by immunoassay were higher compared with LC-MS/MS. The relative mean difference of hepcidin plasma concentrations between the two analytical methods was larger in admission samples than in follow-up samples (admission samples <200 ng/mL: 37%, admission samples >200 ng/mL: 78%, follow-up samples >10 ng/mL: 22%). During acute-phase pneumonia, serum concentrations were on average 22% lower than plasma concentrations when measured by LC-MS/MS.</p><p><strong>Conclusions: </strong>Immunoassay measured higher hepcidin concentrations compared with LC-MS/MS, with more pronounced differences in high-concentration samples during acute-phase pneumonia. These findings should be considered in local method validations and in future harmonization and standardization optimization of hepcidin measurements.</p>\",\"PeriodicalId\":8005,\"journal\":{\"name\":\"Annals of Clinical Biochemistry\",\"volume\":\" \",\"pages\":\"298-305\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ef/a9/10.1177_00045632231159529.PMC10552342.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Clinical Biochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/00045632231159529\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Clinical Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/00045632231159529","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
Hepcidin analysis in pneumonia: Comparison of immunoassay and LC-MS/MS.
Background: The iron-regulatory hormone hepcidin is a promising biomarker to differentiate anaemia of inflammation from iron deficiency. Plasma hepcidin concentrations increase substantially during inflammation, and the amount of smaller, non-biologically active isoforms of hepcidin increase in inflammatory conditions. These smaller isoforms are measured in some, but not all analytical methods. Thus, we evaluated the comparability of two analytical methods with different isoform selectivity during and after acute-phase pneumonia as a highly inflammatory model disease.
Methods: Blood samples from a cohort of 267 hospitalized community-acquired pneumonia patients collected at admission and a 6-week follow-up were analysed. Hepcidin was measured in plasma by an immunoassay, which recognizes all hepcidin isoforms, and a liquid chromatography tandem mass spectrometry (LC-MS/MS), which selectively measures the bioactive hepcidin-25. Additionally, a subset of serum samples was analysed by LC-MS/MS.
Results: Hepcidin measurements by immunoassay were higher compared with LC-MS/MS. The relative mean difference of hepcidin plasma concentrations between the two analytical methods was larger in admission samples than in follow-up samples (admission samples <200 ng/mL: 37%, admission samples >200 ng/mL: 78%, follow-up samples >10 ng/mL: 22%). During acute-phase pneumonia, serum concentrations were on average 22% lower than plasma concentrations when measured by LC-MS/MS.
Conclusions: Immunoassay measured higher hepcidin concentrations compared with LC-MS/MS, with more pronounced differences in high-concentration samples during acute-phase pneumonia. These findings should be considered in local method validations and in future harmonization and standardization optimization of hepcidin measurements.
期刊介绍:
Annals of Clinical Biochemistry is the fully peer reviewed international journal of the Association for Clinical Biochemistry and Laboratory Medicine.
Annals of Clinical Biochemistry accepts papers that contribute to knowledge in all fields of laboratory medicine, especially those pertaining to the understanding, diagnosis and treatment of human disease. It publishes papers on clinical biochemistry, clinical audit, metabolic medicine, immunology, genetics, biotechnology, haematology, microbiology, computing and management where they have both biochemical and clinical relevance. Papers describing evaluation or implementation of commercial reagent kits or the performance of new analysers require substantial original information. Unless of exceptional interest and novelty, studies dealing with the redox status in various diseases are not generally considered within the journal''s scope. Studies documenting the association of single nucleotide polymorphisms (SNPs) with particular phenotypes will not normally be considered, given the greater strength of genome wide association studies (GWAS). Research undertaken in non-human animals will not be considered for publication in the Annals.
Annals of Clinical Biochemistry is also the official journal of NVKC (de Nederlandse Vereniging voor Klinische Chemie) and JSCC (Japan Society of Clinical Chemistry).