{"title":"负链RNA病毒中的核糖核蛋白转运","authors":"Cédric Diot, Gina Cosentino, Marie-Anne Rameix-Welti","doi":"10.1111/boc.202200059","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>Negative-sense, single-stranded RNA (-ssRNA) viruses comprise some of the deadliest human pathogens (Ebola, rabies, influenza A viruses etc.). Developing therapeutic tools relies on a better understanding of their multiplication cycle. For these viruses, the genome replication and transcription activities most-often segregate in membrane-less environments called inclusion bodies (IBs) or viral factories. These “organelles” usually locate far from the cell surface from where new virions are released, and -ssRNA viruses do not encode for transport factors. The efficient trafficking of the genome progeny toward the cell surface is most often ensured by mechanisms co-opting the cellular machineries.</p>\n \n <p>In this review, for each -ssRNA viral family, we cover the methods employed to characterize these host-virus interactions, the strategies used by the viruses to promote the virus genome transport, and the current gaps in the literature. Finally, we highlight how Rab11 has emerged as a target of choice for the intracellular transport of -ssRNA virus genomes.</p>\n </section>\n </div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/boc.202200059","citationCount":"2","resultStr":"{\"title\":\"Ribonucleoprotein transport in Negative Strand RNA viruses\",\"authors\":\"Cédric Diot, Gina Cosentino, Marie-Anne Rameix-Welti\",\"doi\":\"10.1111/boc.202200059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>Negative-sense, single-stranded RNA (-ssRNA) viruses comprise some of the deadliest human pathogens (Ebola, rabies, influenza A viruses etc.). Developing therapeutic tools relies on a better understanding of their multiplication cycle. For these viruses, the genome replication and transcription activities most-often segregate in membrane-less environments called inclusion bodies (IBs) or viral factories. These “organelles” usually locate far from the cell surface from where new virions are released, and -ssRNA viruses do not encode for transport factors. The efficient trafficking of the genome progeny toward the cell surface is most often ensured by mechanisms co-opting the cellular machineries.</p>\\n \\n <p>In this review, for each -ssRNA viral family, we cover the methods employed to characterize these host-virus interactions, the strategies used by the viruses to promote the virus genome transport, and the current gaps in the literature. Finally, we highlight how Rab11 has emerged as a target of choice for the intracellular transport of -ssRNA virus genomes.</p>\\n </section>\\n </div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/boc.202200059\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/boc.202200059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/boc.202200059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Ribonucleoprotein transport in Negative Strand RNA viruses
Negative-sense, single-stranded RNA (-ssRNA) viruses comprise some of the deadliest human pathogens (Ebola, rabies, influenza A viruses etc.). Developing therapeutic tools relies on a better understanding of their multiplication cycle. For these viruses, the genome replication and transcription activities most-often segregate in membrane-less environments called inclusion bodies (IBs) or viral factories. These “organelles” usually locate far from the cell surface from where new virions are released, and -ssRNA viruses do not encode for transport factors. The efficient trafficking of the genome progeny toward the cell surface is most often ensured by mechanisms co-opting the cellular machineries.
In this review, for each -ssRNA viral family, we cover the methods employed to characterize these host-virus interactions, the strategies used by the viruses to promote the virus genome transport, and the current gaps in the literature. Finally, we highlight how Rab11 has emerged as a target of choice for the intracellular transport of -ssRNA virus genomes.