眼动模式可将精神分裂症与主要情感障碍和健康对照组区分开来。

Schizophrenia Bulletin Open Pub Date : 2022-05-20 eCollection Date: 2022-01-01 DOI:10.1093/schizbullopen/sgac032
David St Clair, Graeme MacLennan, Sara A Beedie, Eva Nouzová, Helen Lemmon, Dan Rujescu, Philip J Benson, Andrew McIntosh, Mintu Nath
{"title":"眼动模式可将精神分裂症与主要情感障碍和健康对照组区分开来。","authors":"David St Clair, Graeme MacLennan, Sara A Beedie, Eva Nouzová, Helen Lemmon, Dan Rujescu, Philip J Benson, Andrew McIntosh, Mintu Nath","doi":"10.1093/schizbullopen/sgac032","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and hypothesis: </strong>No objective tests are currently available to help diagnosis of major psychiatric disorders. This study evaluates the potential of eye movement behavior patterns to predict schizophrenia subjects compared to those with major affective disorders and control groups.</p><p><strong>Study design: </strong>Eye movements were recorded from a training set of UK subjects with schizophrenia (SCZ; <i>n</i> = 120), bipolar affective disorder (BPAD; <i>n</i> = 141), major depressive disorder (MDD; <i>n</i> = 136), and healthy controls (CON; <i>n</i> = 142), and from a hold-out set of 133 individuals with proportional group sizes. A German cohort of SCZ (<i>n</i> = 60) and a Scottish cohort of CON subjects (<i>n</i> = 184) acted as a second semi-independent test set. All patients met DSMIV and ICD10 criteria for SCZ, BPAD, and MDD. Data from 98 eye movement features were extracted. We employed a gradient boosted (GB) decision tree multiclass classifier to develop a predictive model. We calculated the area under the curve (AUC) as the primary performance metric.</p><p><strong>Study results: </strong>Estimates of AUC in one-versus-all comparisons were: SCZ (0.85), BPAD (0.78), MDD (0.76), and CON (0.85). Estimates on part-external validation were SCZ (0.89) and CON (0.65). In all cases, there was good specificity but only moderate sensitivity. The best individual discriminators included free viewing, fixation duration, and smooth pursuit tasks. The findings appear robust to potential confounders such as age, sex, medication, or mental state at the time of testing.</p><p><strong>Conclusions: </strong>Eye movement patterns can discriminate schizophrenia from major mood disorders and control subjects with around 80% predictive accuracy.</p>","PeriodicalId":21348,"journal":{"name":"Schizophrenia Bulletin Open","volume":"3 1","pages":"sgac032"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9155263/pdf/","citationCount":"0","resultStr":"{\"title\":\"Eye Movement Patterns Can Distinguish Schizophrenia From the Major Affective Disorders and Healthy Control Subjects.\",\"authors\":\"David St Clair, Graeme MacLennan, Sara A Beedie, Eva Nouzová, Helen Lemmon, Dan Rujescu, Philip J Benson, Andrew McIntosh, Mintu Nath\",\"doi\":\"10.1093/schizbullopen/sgac032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and hypothesis: </strong>No objective tests are currently available to help diagnosis of major psychiatric disorders. This study evaluates the potential of eye movement behavior patterns to predict schizophrenia subjects compared to those with major affective disorders and control groups.</p><p><strong>Study design: </strong>Eye movements were recorded from a training set of UK subjects with schizophrenia (SCZ; <i>n</i> = 120), bipolar affective disorder (BPAD; <i>n</i> = 141), major depressive disorder (MDD; <i>n</i> = 136), and healthy controls (CON; <i>n</i> = 142), and from a hold-out set of 133 individuals with proportional group sizes. A German cohort of SCZ (<i>n</i> = 60) and a Scottish cohort of CON subjects (<i>n</i> = 184) acted as a second semi-independent test set. All patients met DSMIV and ICD10 criteria for SCZ, BPAD, and MDD. Data from 98 eye movement features were extracted. We employed a gradient boosted (GB) decision tree multiclass classifier to develop a predictive model. We calculated the area under the curve (AUC) as the primary performance metric.</p><p><strong>Study results: </strong>Estimates of AUC in one-versus-all comparisons were: SCZ (0.85), BPAD (0.78), MDD (0.76), and CON (0.85). Estimates on part-external validation were SCZ (0.89) and CON (0.65). In all cases, there was good specificity but only moderate sensitivity. The best individual discriminators included free viewing, fixation duration, and smooth pursuit tasks. The findings appear robust to potential confounders such as age, sex, medication, or mental state at the time of testing.</p><p><strong>Conclusions: </strong>Eye movement patterns can discriminate schizophrenia from major mood disorders and control subjects with around 80% predictive accuracy.</p>\",\"PeriodicalId\":21348,\"journal\":{\"name\":\"Schizophrenia Bulletin Open\",\"volume\":\"3 1\",\"pages\":\"sgac032\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9155263/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Schizophrenia Bulletin Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/schizbullopen/sgac032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Schizophrenia Bulletin Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/schizbullopen/sgac032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景与假设:目前还没有客观的测试方法来帮助诊断主要的精神障碍。本研究评估了眼球运动行为模式预测精神分裂症受试者与主要情感障碍受试者和对照组相比的潜力:研究设计:记录了一组英国精神分裂症(SCZ;n = 120)、双相情感障碍(BPAD;n = 141)、重度抑郁障碍(MDD;n = 136)和健康对照组(CON;n = 142)受试者的眼球运动,以及一组按比例分组的 133 人的眼球运动。德国的 SCZ 群体(n = 60)和苏格兰的 CON 群体(n = 184)作为第二个半独立测试组。所有患者均符合 DSMIV 和 ICD10 关于 SCZ、BPAD 和 MDD 的标准。我们从 98 个眼动特征中提取了数据。我们采用梯度提升(GB)决策树多类分类器来开发预测模型。我们计算了曲线下面积(AUC)作为主要的性能指标:在一对多比较中,AUC 的估计值分别为SCZ(0.85)、BPAD(0.78)、MDD(0.76)和CON(0.85)。部分外部验证的估计值为 SCZ(0.89)和 CON(0.65)。在所有情况下,特异性都很好,但敏感性一般。最佳的个体判别因素包括自由观看、固定持续时间和平滑追随任务。这些研究结果似乎不受年龄、性别、药物或测试时精神状态等潜在混杂因素的影响:眼球运动模式可将精神分裂症与主要心境障碍和对照组受试者区分开来,预测准确率约为 80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Eye Movement Patterns Can Distinguish Schizophrenia From the Major Affective Disorders and Healthy Control Subjects.

Background and hypothesis: No objective tests are currently available to help diagnosis of major psychiatric disorders. This study evaluates the potential of eye movement behavior patterns to predict schizophrenia subjects compared to those with major affective disorders and control groups.

Study design: Eye movements were recorded from a training set of UK subjects with schizophrenia (SCZ; n = 120), bipolar affective disorder (BPAD; n = 141), major depressive disorder (MDD; n = 136), and healthy controls (CON; n = 142), and from a hold-out set of 133 individuals with proportional group sizes. A German cohort of SCZ (n = 60) and a Scottish cohort of CON subjects (n = 184) acted as a second semi-independent test set. All patients met DSMIV and ICD10 criteria for SCZ, BPAD, and MDD. Data from 98 eye movement features were extracted. We employed a gradient boosted (GB) decision tree multiclass classifier to develop a predictive model. We calculated the area under the curve (AUC) as the primary performance metric.

Study results: Estimates of AUC in one-versus-all comparisons were: SCZ (0.85), BPAD (0.78), MDD (0.76), and CON (0.85). Estimates on part-external validation were SCZ (0.89) and CON (0.65). In all cases, there was good specificity but only moderate sensitivity. The best individual discriminators included free viewing, fixation duration, and smooth pursuit tasks. The findings appear robust to potential confounders such as age, sex, medication, or mental state at the time of testing.

Conclusions: Eye movement patterns can discriminate schizophrenia from major mood disorders and control subjects with around 80% predictive accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Kenya Psychosis-Risk Outcomes Study (KePROS): Development of an Accelerated Medicine Partnership Schizophrenia (AMP SCZ)-Aligned Project in Africa Schizophrenia spectrum disorders (SSD): an empirical benchmark study of real-world diagnostic accuracy and reliability among leading international psychiatrists Predictors of Long-Acting Injectable Antipsychotic Medication Use in Patients with Schizophrenia Spectrum, Bipolar, and Other Psychotic Disorders in a United States Community-based, Integrated Health System Childhood Anxiety Symptoms as a Predictor of Psychotic Experiences in Adolescence in a High-Risk Cohort for Psychiatric Disorders Add-on Sodium Benzoate and N-Acetylcysteine in patients with early schizophrenia spectrum disorder: a multicentre, double-blind, randomised placebo controlled feasibility trial
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1