{"title":"一步法与两步法生产用作生物指示剂的萎缩芽孢杆菌孢子的比较","authors":"Philipp Stier, Ulrich Kulozik","doi":"10.1002/mbo3.1332","DOIUrl":null,"url":null,"abstract":"<p>The production method of spores significantly influences the resistance of spores used as bioindicators (BI) in the validation of sterilization of packaging material surfaces in aseptic food manufacturing. Therefore, the standardization of the spore production method represents an important and desirable goal in industrial BI production to ensure reliable validation test results. Previously, we recommended a two-step production approach for submerged spore production, in which the cultivation phase to obtain high cell mass was separate from the sporulation phase. In this work, a one-step manufacturing process was investigated to reduce production complexity and facilitate standardization of spore production. It was found that one-step BI production is technically possible but at the expense of spore yield. The two-step manufacturing process can realize almost 10-fold higher spore yields.</p>","PeriodicalId":18573,"journal":{"name":"MicrobiologyOpen","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9632363/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparison of one-step with two-step production of Bacillus atrophaeus spores for use as bioindicators\",\"authors\":\"Philipp Stier, Ulrich Kulozik\",\"doi\":\"10.1002/mbo3.1332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The production method of spores significantly influences the resistance of spores used as bioindicators (BI) in the validation of sterilization of packaging material surfaces in aseptic food manufacturing. Therefore, the standardization of the spore production method represents an important and desirable goal in industrial BI production to ensure reliable validation test results. Previously, we recommended a two-step production approach for submerged spore production, in which the cultivation phase to obtain high cell mass was separate from the sporulation phase. In this work, a one-step manufacturing process was investigated to reduce production complexity and facilitate standardization of spore production. It was found that one-step BI production is technically possible but at the expense of spore yield. The two-step manufacturing process can realize almost 10-fold higher spore yields.</p>\",\"PeriodicalId\":18573,\"journal\":{\"name\":\"MicrobiologyOpen\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9632363/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MicrobiologyOpen\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mbo3.1332\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MicrobiologyOpen","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mbo3.1332","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Comparison of one-step with two-step production of Bacillus atrophaeus spores for use as bioindicators
The production method of spores significantly influences the resistance of spores used as bioindicators (BI) in the validation of sterilization of packaging material surfaces in aseptic food manufacturing. Therefore, the standardization of the spore production method represents an important and desirable goal in industrial BI production to ensure reliable validation test results. Previously, we recommended a two-step production approach for submerged spore production, in which the cultivation phase to obtain high cell mass was separate from the sporulation phase. In this work, a one-step manufacturing process was investigated to reduce production complexity and facilitate standardization of spore production. It was found that one-step BI production is technically possible but at the expense of spore yield. The two-step manufacturing process can realize almost 10-fold higher spore yields.
期刊介绍:
MicrobiologyOpen is a peer reviewed, fully open access, broad-scope, and interdisciplinary journal delivering rapid decisions and fast publication of microbial science, a field which is undergoing a profound and exciting evolution in this post-genomic era.
The journal aims to serve the research community by providing a vehicle for authors wishing to publish quality research in both fundamental and applied microbiology. Our goal is to publish articles that stimulate discussion and debate, as well as add to our knowledge base and further the understanding of microbial interactions and microbial processes.
MicrobiologyOpen gives prompt and equal consideration to articles reporting theoretical, experimental, applied, and descriptive work in all aspects of bacteriology, virology, mycology and protistology, including, but not limited to:
- agriculture
- antimicrobial resistance
- astrobiology
- biochemistry
- biotechnology
- cell and molecular biology
- clinical microbiology
- computational, systems, and synthetic microbiology
- environmental science
- evolutionary biology, ecology, and systematics
- food science and technology
- genetics and genomics
- geobiology and earth science
- host-microbe interactions
- infectious diseases
- natural products discovery
- pharmaceutical and medicinal chemistry
- physiology
- plant pathology
- veterinary microbiology
We will consider submissions across unicellular and cell-cluster organisms: prokaryotes (bacteria, archaea) and eukaryotes (fungi, protists, microalgae, lichens), as well as viruses and prions infecting or interacting with microorganisms, plants and animals, including genetic, biochemical, biophysical, bioinformatic and structural analyses.
The journal features Original Articles (including full Research articles, Method articles, and Short Communications), Commentaries, Reviews, and Editorials. Original papers must report well-conducted research with conclusions supported by the data presented in the article. We also support confirmatory research and aim to work with authors to meet reviewer expectations.
MicrobiologyOpen publishes articles submitted directly to the journal and those referred from other Wiley journals.