面向智能电网的有线/无线混合确定性网络。

IF 10.9 1区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Wireless Communications Pub Date : 2021-06-01 DOI:10.1109/mwc.001.2000493
Bin Hu, Hamid Gharavi
{"title":"面向智能电网的有线/无线混合确定性网络。","authors":"Bin Hu,&nbsp;Hamid Gharavi","doi":"10.1109/mwc.001.2000493","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid growth of time-critical applications in smart grid, robotics, autonomous vehicles, and industrial automation, demand for high reliability, low latency and strictly bounded jitter is sharply increasing. High-precision time synchronization communications, such as Time Triggered Ethernet (TTE), have been successfully developed for wired networks. However, the high cost of deploying additional equipment and extra wiring limits the scalability of these networks. Therefore, in this article, a hybrid wired/wireless high-precision time synchronization network based on a combination of high-speed TTE and 5G Ultra-Reliable and Low-Latency Communications (URLLC) is proposed. The main motivation is to comply with the low latency, low jitter, and high reliability requirements of time critical applications, such as smart grid synchrophasor communications. Therefore, in the proposed hybrid network architecture, a high-speed TTE is considered as the main bus (i.e., backbone network), whereas a Precision Time Protocol (PTP) aided 5G-URLLC-based wireless access is used as a sub-network. The main challenge is to achieve interoperability between the PTP aided URLLC and the TTE, while ensuring high precision timing and synchronization. The simulation results demonstrate the impact of the PTP-aided URLLC in maintaining network reliability, latency, and jitter in full coordination with the TTE-network.</p>","PeriodicalId":13342,"journal":{"name":"IEEE Wireless Communications","volume":"28 3","pages":""},"PeriodicalIF":10.9000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/mwc.001.2000493","citationCount":"8","resultStr":"{\"title\":\"A Hybrid Wired/Wireless Deterministic Network for Smart Grid.\",\"authors\":\"Bin Hu,&nbsp;Hamid Gharavi\",\"doi\":\"10.1109/mwc.001.2000493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the rapid growth of time-critical applications in smart grid, robotics, autonomous vehicles, and industrial automation, demand for high reliability, low latency and strictly bounded jitter is sharply increasing. High-precision time synchronization communications, such as Time Triggered Ethernet (TTE), have been successfully developed for wired networks. However, the high cost of deploying additional equipment and extra wiring limits the scalability of these networks. Therefore, in this article, a hybrid wired/wireless high-precision time synchronization network based on a combination of high-speed TTE and 5G Ultra-Reliable and Low-Latency Communications (URLLC) is proposed. The main motivation is to comply with the low latency, low jitter, and high reliability requirements of time critical applications, such as smart grid synchrophasor communications. Therefore, in the proposed hybrid network architecture, a high-speed TTE is considered as the main bus (i.e., backbone network), whereas a Precision Time Protocol (PTP) aided 5G-URLLC-based wireless access is used as a sub-network. The main challenge is to achieve interoperability between the PTP aided URLLC and the TTE, while ensuring high precision timing and synchronization. The simulation results demonstrate the impact of the PTP-aided URLLC in maintaining network reliability, latency, and jitter in full coordination with the TTE-network.</p>\",\"PeriodicalId\":13342,\"journal\":{\"name\":\"IEEE Wireless Communications\",\"volume\":\"28 3\",\"pages\":\"\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/mwc.001.2000493\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Wireless Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/mwc.001.2000493\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Wireless Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/mwc.001.2000493","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 8

摘要

随着智能电网、机器人、自动驾驶汽车和工业自动化中时间关键型应用的快速增长,对高可靠性、低延迟和严格有界抖动的需求急剧增加。高精度时间同步通信,如时间触发以太网(TTE),已经成功地开发用于有线网络。然而,部署额外设备和额外布线的高成本限制了这些网络的可扩展性。因此,本文提出了一种基于高速TTE和5G超可靠低延迟通信(URLLC)相结合的混合有线/无线高精度时间同步网络。主要动机是为了满足时间关键应用的低延迟、低抖动和高可靠性要求,例如智能电网同步相量通信。因此,在提出的混合网络架构中,高速TTE被认为是主总线(即骨干网),而基于精确时间协议(PTP)辅助的基于5g - urllc的无线接入被用作子网。主要的挑战是实现PTP辅助URLLC和TTE之间的互操作性,同时确保高精度的定时和同步。仿真结果证明了ptp辅助URLLC在保持网络可靠性、延迟和抖动与te网络充分协调方面的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Hybrid Wired/Wireless Deterministic Network for Smart Grid.

With the rapid growth of time-critical applications in smart grid, robotics, autonomous vehicles, and industrial automation, demand for high reliability, low latency and strictly bounded jitter is sharply increasing. High-precision time synchronization communications, such as Time Triggered Ethernet (TTE), have been successfully developed for wired networks. However, the high cost of deploying additional equipment and extra wiring limits the scalability of these networks. Therefore, in this article, a hybrid wired/wireless high-precision time synchronization network based on a combination of high-speed TTE and 5G Ultra-Reliable and Low-Latency Communications (URLLC) is proposed. The main motivation is to comply with the low latency, low jitter, and high reliability requirements of time critical applications, such as smart grid synchrophasor communications. Therefore, in the proposed hybrid network architecture, a high-speed TTE is considered as the main bus (i.e., backbone network), whereas a Precision Time Protocol (PTP) aided 5G-URLLC-based wireless access is used as a sub-network. The main challenge is to achieve interoperability between the PTP aided URLLC and the TTE, while ensuring high precision timing and synchronization. The simulation results demonstrate the impact of the PTP-aided URLLC in maintaining network reliability, latency, and jitter in full coordination with the TTE-network.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Wireless Communications
IEEE Wireless Communications 工程技术-电信学
CiteScore
24.20
自引率
1.60%
发文量
183
审稿时长
6-12 weeks
期刊介绍: IEEE Wireless Communications is tailored for professionals within the communications and networking communities. It addresses technical and policy issues associated with personalized, location-independent communications across various media and protocol layers. Encompassing both wired and wireless communications, the magazine explores the intersection of computing, the mobility of individuals, communicating devices, and personalized services. Every issue of this interdisciplinary publication presents high-quality articles delving into the revolutionary technological advances in personal, location-independent communications, and computing. IEEE Wireless Communications provides an insightful platform for individuals engaged in these dynamic fields, offering in-depth coverage of significant developments in the realm of communication technology.
期刊最新文献
Feasibility and Opportunities of Terrestrial Network and Non-Terrestrial Network Spectrum Sharing Toward the Development of 6G System Level Simulators: Addressing the Computational Complexity Challenge MaCro: Mega-Constellations Routing Systems with Multi-Edge Cross-Domain Features Computer Vision-Based Joint Space Sensing and Communication Systems: Non-Source, Autonomy, and Low Latency Distributed Approach to Satellite Direct-to-Cell Connectivity in 6G Non-Terrestrial Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1