真实世界的证据:入门。

IF 3.1 Q2 PHARMACOLOGY & PHARMACY Pharmaceutical Medicine Pub Date : 2023-01-01 DOI:10.1007/s40290-022-00456-6
Amit Dang
{"title":"真实世界的证据:入门。","authors":"Amit Dang","doi":"10.1007/s40290-022-00456-6","DOIUrl":null,"url":null,"abstract":"<p><p>Real-world evidence (RWE) is clinical evidence on a medical product's safety and efficacy that is generated using real-world data (RWD) resulting from routine healthcare delivery. There are several sources of RWD, including electronic health records (EHRs), registries, claims/billing data, and patient-generated data, as well as those from mobile health applications and wearable devices. Real-world data from these sources can be collected and analysed through different study designs such as prospective and retrospective cohort studies, case-control studies, and pragmatic clinical trials. Real-world evidence in the form of post-marketing surveillance has been extensively used to generate pharmacovigilance data. Of late, it has been realised that, apart from safety, RWE has additional applications in different stages of the drug approval cycle, and can be used to optimize the design of randomised controlled trials (RCTs). There has been an increasing awareness and acceptance of RWE from different stakeholders, including physicians, pharmaceutical companies, payers, regulators, and patients. Several regulatory authorities have also created frameworks and guidelines for efficient harnessing of RWE while acknowledging several challenges in RWD collection and analysis. The purpose of this review is to offer an outline of the current information on RWE, its advantages and disadvantages, as well as the associated challenges and ways to overcome them, while also throwing some light on the future of RWE.</p>","PeriodicalId":19778,"journal":{"name":"Pharmaceutical Medicine","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9815890/pdf/","citationCount":"9","resultStr":"{\"title\":\"Real-World Evidence: A Primer.\",\"authors\":\"Amit Dang\",\"doi\":\"10.1007/s40290-022-00456-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Real-world evidence (RWE) is clinical evidence on a medical product's safety and efficacy that is generated using real-world data (RWD) resulting from routine healthcare delivery. There are several sources of RWD, including electronic health records (EHRs), registries, claims/billing data, and patient-generated data, as well as those from mobile health applications and wearable devices. Real-world data from these sources can be collected and analysed through different study designs such as prospective and retrospective cohort studies, case-control studies, and pragmatic clinical trials. Real-world evidence in the form of post-marketing surveillance has been extensively used to generate pharmacovigilance data. Of late, it has been realised that, apart from safety, RWE has additional applications in different stages of the drug approval cycle, and can be used to optimize the design of randomised controlled trials (RCTs). There has been an increasing awareness and acceptance of RWE from different stakeholders, including physicians, pharmaceutical companies, payers, regulators, and patients. Several regulatory authorities have also created frameworks and guidelines for efficient harnessing of RWE while acknowledging several challenges in RWD collection and analysis. The purpose of this review is to offer an outline of the current information on RWE, its advantages and disadvantages, as well as the associated challenges and ways to overcome them, while also throwing some light on the future of RWE.</p>\",\"PeriodicalId\":19778,\"journal\":{\"name\":\"Pharmaceutical Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9815890/pdf/\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40290-022-00456-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40290-022-00456-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 9

摘要

真实世界证据(RWE)是关于医疗产品安全性和有效性的临床证据,它是使用常规医疗保健服务产生的真实世界数据(RWD)生成的。RWD有几个来源,包括电子健康记录(EHRs)、注册表、索赔/计费数据和患者生成的数据,以及来自移动健康应用程序和可穿戴设备的数据。可以通过不同的研究设计,如前瞻性和回顾性队列研究、病例对照研究和实用临床试验,收集和分析来自这些来源的真实世界数据。上市后监测形式的真实证据已被广泛用于生成药物警戒数据。最近,人们已经意识到,除了安全性之外,RWE在药物批准周期的不同阶段还有其他应用,并可用于优化随机对照试验(rct)的设计。不同的利益相关者,包括医生、制药公司、支付方、监管机构和患者,对RWE的认识和接受程度越来越高。一些监管机构也制定了有效利用RWE的框架和指导方针,同时承认在RWD收集和分析方面存在一些挑战。这篇综述的目的是概述莱茵集团目前的信息,它的优点和缺点,以及相关的挑战和克服这些挑战的方法,同时也为莱茵集团的未来提供一些启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-World Evidence: A Primer.

Real-world evidence (RWE) is clinical evidence on a medical product's safety and efficacy that is generated using real-world data (RWD) resulting from routine healthcare delivery. There are several sources of RWD, including electronic health records (EHRs), registries, claims/billing data, and patient-generated data, as well as those from mobile health applications and wearable devices. Real-world data from these sources can be collected and analysed through different study designs such as prospective and retrospective cohort studies, case-control studies, and pragmatic clinical trials. Real-world evidence in the form of post-marketing surveillance has been extensively used to generate pharmacovigilance data. Of late, it has been realised that, apart from safety, RWE has additional applications in different stages of the drug approval cycle, and can be used to optimize the design of randomised controlled trials (RCTs). There has been an increasing awareness and acceptance of RWE from different stakeholders, including physicians, pharmaceutical companies, payers, regulators, and patients. Several regulatory authorities have also created frameworks and guidelines for efficient harnessing of RWE while acknowledging several challenges in RWD collection and analysis. The purpose of this review is to offer an outline of the current information on RWE, its advantages and disadvantages, as well as the associated challenges and ways to overcome them, while also throwing some light on the future of RWE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmaceutical Medicine
Pharmaceutical Medicine PHARMACOLOGY & PHARMACY-
CiteScore
5.10
自引率
4.00%
发文量
36
期刊介绍: Pharmaceutical Medicine is a specialist discipline concerned with medical aspects of the discovery, development, evaluation, registration, regulation, monitoring, marketing, distribution and pricing of medicines, drug-device and drug-diagnostic combinations. The Journal disseminates information to support the community of professionals working in these highly inter-related functions. Key areas include translational medicine, clinical trial design, pharmacovigilance, clinical toxicology, drug regulation, clinical pharmacology, biostatistics and pharmacoeconomics. The Journal includes:Overviews of contentious or emerging issues.Comprehensive narrative reviews that provide an authoritative source of information on topical issues.Systematic reviews that collate empirical evidence to answer a specific research question, using explicit, systematic methods as outlined by PRISMA statement.Original research articles reporting the results of well-designed studies with a strong link to wider areas of clinical research.Additional digital features (including animated abstracts, video abstracts, slide decks, audio slides, instructional videos, infographics, podcasts and animations) can be published with articles; these are designed to increase the visibility, readership and educational value of the journal’s content. In addition, articles published in Pharmaceutical Medicine may be accompanied by plain language summaries to assist readers who have some knowledge of, but not in-depth expertise in, the area to understand important medical advances.All manuscripts are subject to peer review by international experts. Letters to the Editor are welcomed and will be considered for publication.
期刊最新文献
Artificial Intelligence in Medical Affairs: A New Paradigm with Novel Opportunities. Evaluation of the Effectiveness of Additional Risk Minimization Measures for Ixazomib Citrate for Relapsed/Refractory Multiple Myeloma in Japan: A Web-Based Survey Among Pharmacists. P.O.L.A.R. Star: A New Framework Developed and Applied by One Mid-Sized Pharmaceutical Company to Drive Digital Transformation in R&D. Cultivating Excellence: Future-Proofing Medical Affairs with Tailored Talent Programs. Considerations for Planning Effective and Appealing Advisory Boards and Other Small-Group Meetings with Health Care Providers: Importance of Participant Preferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1