一种新的二次多项式项优化灰色模型及其应用

Suzhen Li, Yuzhen Chen, Rui Dong
{"title":"一种新的二次多项式项优化灰色模型及其应用","authors":"Suzhen Li,&nbsp;Yuzhen Chen,&nbsp;Rui Dong","doi":"10.1016/j.csfx.2022.100074","DOIUrl":null,"url":null,"abstract":"<div><p>The grey prediction model has been widely used in various fields and demonstrated good performance. However, when the data shows non-homogeneous exponential characteristic, the effect of the grey prediction model performs poorly. Therefore, a grey prediction model with a quadratic polynomial term (denoted as NGM(1,1,<span><math><msup><mi>k</mi><mn>2</mn></msup></math></span>) is developed. The NGM(1,1,<span><math><msup><mi>k</mi><mn>2</mn></msup></math></span>) model is generalized, the GM(1,1) model, the GM(1,1,k) model, the SAIGM model and the GM(1,1,<span><math><msup><mi>k</mi><mn>2</mn></msup></math></span>) model are the special forms of it. Moreover, the parameter characteristics of the NGM(1,1,<span><math><msup><mi>k</mi><mn>2</mn></msup></math></span>) model and the effect on the modeling precision are evaluated under the multiplication transformation. To make the NGM(1,1,<span><math><msup><mi>k</mi><mn>2</mn></msup></math></span>) model more precise, we further analyze the error of the NGM(1,1,<span><math><msup><mi>k</mi><mn>2</mn></msup></math></span>) model and propose a new model, named BNGM(1,1,<span><math><msup><mi>k</mi><mn>2</mn></msup></math></span>) model, of which the background value is reconstructed based on the Simpson formula. Subsequently, the effectiveness of the new model is verified through four cases. The result shows that the prediction accuracy of the BNGM(1,1,<span><math><msup><mi>k</mi><mn>2</mn></msup></math></span>) model is significantly improved. Finally, the BNGM(1,1,<span><math><msup><mi>k</mi><mn>2</mn></msup></math></span>) model is applied to analyse and predict the Gross Domestic Product (GDP) of Chongqing’s primary industry, the total power of Chongqing’s agricultural machinery and the GDP of Chongqing’s wholesale and retail trades, which shows the prediction performance of the new model is superior to other models.</p></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"8 ","pages":"Article 100074"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590054422000045/pdfft?md5=1f2452e5bc1f5aa079de4ca7fa940d15&pid=1-s2.0-S2590054422000045-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A novel optimized grey model with quadratic polynomials term and its application\",\"authors\":\"Suzhen Li,&nbsp;Yuzhen Chen,&nbsp;Rui Dong\",\"doi\":\"10.1016/j.csfx.2022.100074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The grey prediction model has been widely used in various fields and demonstrated good performance. However, when the data shows non-homogeneous exponential characteristic, the effect of the grey prediction model performs poorly. Therefore, a grey prediction model with a quadratic polynomial term (denoted as NGM(1,1,<span><math><msup><mi>k</mi><mn>2</mn></msup></math></span>) is developed. The NGM(1,1,<span><math><msup><mi>k</mi><mn>2</mn></msup></math></span>) model is generalized, the GM(1,1) model, the GM(1,1,k) model, the SAIGM model and the GM(1,1,<span><math><msup><mi>k</mi><mn>2</mn></msup></math></span>) model are the special forms of it. Moreover, the parameter characteristics of the NGM(1,1,<span><math><msup><mi>k</mi><mn>2</mn></msup></math></span>) model and the effect on the modeling precision are evaluated under the multiplication transformation. To make the NGM(1,1,<span><math><msup><mi>k</mi><mn>2</mn></msup></math></span>) model more precise, we further analyze the error of the NGM(1,1,<span><math><msup><mi>k</mi><mn>2</mn></msup></math></span>) model and propose a new model, named BNGM(1,1,<span><math><msup><mi>k</mi><mn>2</mn></msup></math></span>) model, of which the background value is reconstructed based on the Simpson formula. Subsequently, the effectiveness of the new model is verified through four cases. The result shows that the prediction accuracy of the BNGM(1,1,<span><math><msup><mi>k</mi><mn>2</mn></msup></math></span>) model is significantly improved. Finally, the BNGM(1,1,<span><math><msup><mi>k</mi><mn>2</mn></msup></math></span>) model is applied to analyse and predict the Gross Domestic Product (GDP) of Chongqing’s primary industry, the total power of Chongqing’s agricultural machinery and the GDP of Chongqing’s wholesale and retail trades, which shows the prediction performance of the new model is superior to other models.</p></div>\",\"PeriodicalId\":37147,\"journal\":{\"name\":\"Chaos, Solitons and Fractals: X\",\"volume\":\"8 \",\"pages\":\"Article 100074\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590054422000045/pdfft?md5=1f2452e5bc1f5aa079de4ca7fa940d15&pid=1-s2.0-S2590054422000045-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos, Solitons and Fractals: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590054422000045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590054422000045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

灰色预测模型已广泛应用于各个领域,并取得了良好的效果。然而,当数据呈现非齐次指数特征时,灰色预测模型的效果较差。因此,建立了一个二次多项式项的灰色预测模型(记为NGM(1,1,k2))。对NGM(1,1,k2)模型进行了推广,GM(1,1)模型、GM(1,1,k)模型、SAIGM模型和GM(1,1,k2)模型是它的特殊形式。在乘法变换下,评价了NGM(1,1,k2)模型的参数特征及其对建模精度的影响。为了使NGM(1,1,k2)模型更加精确,我们进一步分析了NGM(1,1,k2)模型的误差,提出了一个新的模型,命名为BNGM(1,1,k2)模型,该模型的背景值基于Simpson公式重构。随后,通过四个案例验证了新模型的有效性。结果表明,BNGM(1,1,k2)模型的预测精度得到了显著提高。最后,运用BNGM(1,1,k2)模型对重庆市第一产业GDP、重庆市农机总功率和重庆市批发零售业GDP进行了分析预测,结果表明,新模型的预测效果优于其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel optimized grey model with quadratic polynomials term and its application

The grey prediction model has been widely used in various fields and demonstrated good performance. However, when the data shows non-homogeneous exponential characteristic, the effect of the grey prediction model performs poorly. Therefore, a grey prediction model with a quadratic polynomial term (denoted as NGM(1,1,k2) is developed. The NGM(1,1,k2) model is generalized, the GM(1,1) model, the GM(1,1,k) model, the SAIGM model and the GM(1,1,k2) model are the special forms of it. Moreover, the parameter characteristics of the NGM(1,1,k2) model and the effect on the modeling precision are evaluated under the multiplication transformation. To make the NGM(1,1,k2) model more precise, we further analyze the error of the NGM(1,1,k2) model and propose a new model, named BNGM(1,1,k2) model, of which the background value is reconstructed based on the Simpson formula. Subsequently, the effectiveness of the new model is verified through four cases. The result shows that the prediction accuracy of the BNGM(1,1,k2) model is significantly improved. Finally, the BNGM(1,1,k2) model is applied to analyse and predict the Gross Domestic Product (GDP) of Chongqing’s primary industry, the total power of Chongqing’s agricultural machinery and the GDP of Chongqing’s wholesale and retail trades, which shows the prediction performance of the new model is superior to other models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos, Solitons and Fractals: X
Chaos, Solitons and Fractals: X Mathematics-Mathematics (all)
CiteScore
5.00
自引率
0.00%
发文量
15
审稿时长
20 weeks
期刊最新文献
Effects of synapse location, delay and background stochastic activity on synchronising hippocampal CA1 neurons Solitary and traveling wave solutions to nematic liquid crystal equations using Jacobi elliptic functions A high-order rogue wave generated by collision in three-component Bose–Einstein condensates Recurrence formula for some higher order evolution equations Finite-time dynamics of the fractional-order epidemic model: Stability, synchronization, and simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1