{"title":"学习循环隐量子马尔可夫模型:一种张量网络方法","authors":"Mohammad Ali Javidian;Vaneet Aggarwal;Zubin Jacob","doi":"10.1109/TQE.2023.3319254","DOIUrl":null,"url":null,"abstract":"This article proposes circular hidden quantum Markov models (c-HQMMs), which can be applied for modeling temporal data. We show that c-HQMMs are equivalent to a tensor network (more precisely, circular local purified state) model. This equivalence enables us to provide an efficient learning model for c-HQMMs. The proposed learning approach is evaluated on six real datasets and demonstrates the advantage of c-HQMMs as compared to HQMMs and HMMs.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"4 ","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10269064","citationCount":"3","resultStr":"{\"title\":\"Learning Circular Hidden Quantum Markov Models: A Tensor Network Approach\",\"authors\":\"Mohammad Ali Javidian;Vaneet Aggarwal;Zubin Jacob\",\"doi\":\"10.1109/TQE.2023.3319254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes circular hidden quantum Markov models (c-HQMMs), which can be applied for modeling temporal data. We show that c-HQMMs are equivalent to a tensor network (more precisely, circular local purified state) model. This equivalence enables us to provide an efficient learning model for c-HQMMs. The proposed learning approach is evaluated on six real datasets and demonstrates the advantage of c-HQMMs as compared to HQMMs and HMMs.\",\"PeriodicalId\":100644,\"journal\":{\"name\":\"IEEE Transactions on Quantum Engineering\",\"volume\":\"4 \",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10269064\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Quantum Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10269064/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10269064/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning Circular Hidden Quantum Markov Models: A Tensor Network Approach
This article proposes circular hidden quantum Markov models (c-HQMMs), which can be applied for modeling temporal data. We show that c-HQMMs are equivalent to a tensor network (more precisely, circular local purified state) model. This equivalence enables us to provide an efficient learning model for c-HQMMs. The proposed learning approach is evaluated on six real datasets and demonstrates the advantage of c-HQMMs as compared to HQMMs and HMMs.