不同正常载荷下运动鞋在不同运动面上的旋转牵引力比较

T.J. Serensits, A.S. McNitt
{"title":"不同正常载荷下运动鞋在不同运动面上的旋转牵引力比较","authors":"T.J. Serensits,&nbsp;A.S. McNitt","doi":"10.2134/ATS-2013-0073-RS","DOIUrl":null,"url":null,"abstract":"<p>As an athlete accelerates, stops, and changes direction, numerous forces are transmitted to the lower extremities. The interaction between an athlete's shoe and the playing surface has been indicated as a factor in lower extremity injury risk. In particular, high rotational forces may result in increased injuries to the lower extremities. Rotational traction forces produced by eight different cleated shoes on Kentucky bluegrass (<i>Poa pratensis</i> L.), AstroTurf GameDay Grass 3D, FieldTurf Revolution, and Sportexe Omnigrass 51 under three normal loads (vertical forces) of 787, 1054, and 1321 N were measured using Pennfoot, a portable traction testing device. Of the treatments in this study, shoe type influenced rotational traction most, with differences among shoes being nearly four times as large as those among playing surfaces. Traction was either the same or within several Nm on each surface tested. Traction on the three synthetic turf surfaces ranged from 49.3 to 53.1 Nm and the traction level of Kentucky bluegrass was 52.3 Nm. Traction levels among shoes ranged from 43.8 to 58.6 Nm. The results of this study indicate that footwear selection has a larger effect on rotational traction, and potentially injury risk, than the playing surfaces evaluated in this study.</p>","PeriodicalId":100111,"journal":{"name":"Applied Turfgrass Science","volume":"11 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2134/ATS-2013-0073-RS","citationCount":"12","resultStr":"{\"title\":\"Comparison of Rotational Traction of Athletic Footwear on Varying Playing Surfaces Using Different Normal Loads\",\"authors\":\"T.J. Serensits,&nbsp;A.S. McNitt\",\"doi\":\"10.2134/ATS-2013-0073-RS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As an athlete accelerates, stops, and changes direction, numerous forces are transmitted to the lower extremities. The interaction between an athlete's shoe and the playing surface has been indicated as a factor in lower extremity injury risk. In particular, high rotational forces may result in increased injuries to the lower extremities. Rotational traction forces produced by eight different cleated shoes on Kentucky bluegrass (<i>Poa pratensis</i> L.), AstroTurf GameDay Grass 3D, FieldTurf Revolution, and Sportexe Omnigrass 51 under three normal loads (vertical forces) of 787, 1054, and 1321 N were measured using Pennfoot, a portable traction testing device. Of the treatments in this study, shoe type influenced rotational traction most, with differences among shoes being nearly four times as large as those among playing surfaces. Traction was either the same or within several Nm on each surface tested. Traction on the three synthetic turf surfaces ranged from 49.3 to 53.1 Nm and the traction level of Kentucky bluegrass was 52.3 Nm. Traction levels among shoes ranged from 43.8 to 58.6 Nm. The results of this study indicate that footwear selection has a larger effect on rotational traction, and potentially injury risk, than the playing surfaces evaluated in this study.</p>\",\"PeriodicalId\":100111,\"journal\":{\"name\":\"Applied Turfgrass Science\",\"volume\":\"11 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2134/ATS-2013-0073-RS\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Turfgrass Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.2134/ATS-2013-0073-RS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Turfgrass Science","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.2134/ATS-2013-0073-RS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

当运动员加速、停止和改变方向时,大量的力传递到下肢。运动员的鞋和比赛表面之间的相互作用已被表明是下肢受伤风险的一个因素。特别是,高旋转力可能导致下肢损伤增加。使用便携式牵引力测试装置Pennfoot测量了8种不同的夹板鞋在787、1054和1321 N三种正常载荷(垂直力)下在肯塔基蓝草(Poa pratensis L.)、AstroTurf GameDay Grass 3D、FieldTurf Revolution和Sportexe omniggrass 51上产生的旋转牵引力。在这项研究中,鞋子类型对旋转牵引力的影响最大,鞋子之间的差异几乎是运动场地之间差异的四倍。在每个测试表面上,牵引力要么相同,要么在几纳米内。3种人造草坪表面的牵引力为49.3 ~ 53.1 Nm,肯塔基蓝草的牵引力为52.3 Nm。鞋子的牵引力从43.8到58.6毫微米不等。本研究的结果表明,鞋类选择对旋转牵引力和潜在伤害风险的影响比本研究中评估的比赛场地更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of Rotational Traction of Athletic Footwear on Varying Playing Surfaces Using Different Normal Loads

As an athlete accelerates, stops, and changes direction, numerous forces are transmitted to the lower extremities. The interaction between an athlete's shoe and the playing surface has been indicated as a factor in lower extremity injury risk. In particular, high rotational forces may result in increased injuries to the lower extremities. Rotational traction forces produced by eight different cleated shoes on Kentucky bluegrass (Poa pratensis L.), AstroTurf GameDay Grass 3D, FieldTurf Revolution, and Sportexe Omnigrass 51 under three normal loads (vertical forces) of 787, 1054, and 1321 N were measured using Pennfoot, a portable traction testing device. Of the treatments in this study, shoe type influenced rotational traction most, with differences among shoes being nearly four times as large as those among playing surfaces. Traction was either the same or within several Nm on each surface tested. Traction on the three synthetic turf surfaces ranged from 49.3 to 53.1 Nm and the traction level of Kentucky bluegrass was 52.3 Nm. Traction levels among shoes ranged from 43.8 to 58.6 Nm. The results of this study indicate that footwear selection has a larger effect on rotational traction, and potentially injury risk, than the playing surfaces evaluated in this study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of Antimicrobial Compounds on Etiolation Caused by Xanthomonas translucens and on Turf Quality of Creeping Bentgrass Putting-Green Turf Applicator and Primo Effects on the Persistence of Painted Golf Course Water Hazard and Out-of-Bounds Lines on Bermudagrass Cultivation Effects on Organic Matter Concentration and Infiltration Rates of Two Creeping Bentgrass (Agrostis stolonifera L.) Putting Greens Amicarbazone Application Timing Influences Overseeded Perennial Ryegrass (Lolium perenne L.) Safety and Annual Bluegrass (Poa annua L.) Control Turfgrass Winterkill Observations from the Great Lakes Region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1