基于卷积神经网络的三维DRAM-RRAM混合存储器的动态热预测工作负荷运动

Shu-Yen Lin, Guang-Fong Liu
{"title":"基于卷积神经网络的三维DRAM-RRAM混合存储器的动态热预测工作负荷运动","authors":"Shu-Yen Lin, Guang-Fong Liu","doi":"10.1109/ICCE-Taiwan55306.2022.9869204","DOIUrl":null,"url":null,"abstract":"Nowadays, Convolutional Neural Network (CNN) is widely used in many applications. Multi -layered convolutional neural networks need lots of memory capacity and bandwidth. A large number of the CNN parameters cause long latency for the memory accesses. To solve this problem, the 3D stacked DRAM-RRAM hybrid memory is discussed. However, the 3D stacked DRAM-RRAM hybrid memory may result in serious thermal problem for the thermal limitation of the DRAM and RRAM chips. In this work, we propose the dynamic thermal-predicted workload movement (DTPWM) to solve this problem. If the overheated banks of the DRAM and RRAM chips are predicted, DTPWM can move the workloads to other non-overheated memory banks. In our experiment, the latencies of the 3D stacked DRAM-RRAM hybrid memory is reduced by 27.7% under the thermal limitation.","PeriodicalId":164671,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics - Taiwan","volume":"50 20","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Thermal-Predicted Workload Movement with Three-Dimensional DRAM-RRAM Hybrid Memories for Convolutional Neural Network Applications\",\"authors\":\"Shu-Yen Lin, Guang-Fong Liu\",\"doi\":\"10.1109/ICCE-Taiwan55306.2022.9869204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, Convolutional Neural Network (CNN) is widely used in many applications. Multi -layered convolutional neural networks need lots of memory capacity and bandwidth. A large number of the CNN parameters cause long latency for the memory accesses. To solve this problem, the 3D stacked DRAM-RRAM hybrid memory is discussed. However, the 3D stacked DRAM-RRAM hybrid memory may result in serious thermal problem for the thermal limitation of the DRAM and RRAM chips. In this work, we propose the dynamic thermal-predicted workload movement (DTPWM) to solve this problem. If the overheated banks of the DRAM and RRAM chips are predicted, DTPWM can move the workloads to other non-overheated memory banks. In our experiment, the latencies of the 3D stacked DRAM-RRAM hybrid memory is reduced by 27.7% under the thermal limitation.\",\"PeriodicalId\":164671,\"journal\":{\"name\":\"2022 IEEE International Conference on Consumer Electronics - Taiwan\",\"volume\":\"50 20\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Consumer Electronics - Taiwan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,卷积神经网络(CNN)在许多应用中得到了广泛的应用。多层卷积神经网络需要大量的存储容量和带宽。大量的CNN参数会导致对内存的访问延迟较长。为了解决这一问题,讨论了3D堆叠式DRAM-RRAM混合存储器。然而,由于DRAM和RRAM芯片的热限制,3D堆叠式DRAM-RRAM混合存储器可能会导致严重的热问题。在这项工作中,我们提出了动态热预测工作负载移动(DTPWM)来解决这个问题。如果预测到DRAM和RRAM芯片的过热组,DTPWM可以将工作负载转移到其他不过热的内存组。在我们的实验中,在热限制下,3D堆叠DRAM-RRAM混合存储器的延迟降低了27.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Thermal-Predicted Workload Movement with Three-Dimensional DRAM-RRAM Hybrid Memories for Convolutional Neural Network Applications
Nowadays, Convolutional Neural Network (CNN) is widely used in many applications. Multi -layered convolutional neural networks need lots of memory capacity and bandwidth. A large number of the CNN parameters cause long latency for the memory accesses. To solve this problem, the 3D stacked DRAM-RRAM hybrid memory is discussed. However, the 3D stacked DRAM-RRAM hybrid memory may result in serious thermal problem for the thermal limitation of the DRAM and RRAM chips. In this work, we propose the dynamic thermal-predicted workload movement (DTPWM) to solve this problem. If the overheated banks of the DRAM and RRAM chips are predicted, DTPWM can move the workloads to other non-overheated memory banks. In our experiment, the latencies of the 3D stacked DRAM-RRAM hybrid memory is reduced by 27.7% under the thermal limitation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Thermal-Predicted Workload Movement with Three-Dimensional DRAM-RRAM Hybrid Memories for Convolutional Neural Network Applications Performance Evaluation of Fault-Tolerant Routing Methods Using Parallel Programs Down-Sampling Dark Channel Prior of Airlight Estimation for Low Complexity Image Dehazing Chip Design Image Confusion Applied to Industrial Defect Detection System On Multimodal Semantic Consistency Detection of News Articles with Image Caption Pairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1