基于峰值感知时间图卷积网络的交通预测

Fatih Acun, Sinan Kalkan, Ebru Aydin Gol
{"title":"基于峰值感知时间图卷积网络的交通预测","authors":"Fatih Acun, Sinan Kalkan, Ebru Aydin Gol","doi":"10.1109/SIU55565.2022.9864925","DOIUrl":null,"url":null,"abstract":"In this study, traffic speed prediction on a large-scale traffic network in Ankara City is performed using deep neural networks. For this purpose, a spatiotemporal deep learning model consisting of Graphical Convolutional Networks and Gated Recurrent Units used as the baseline, and (i) the input space is expanded by temporal embedding to better take into account temporal information, and (ii) to increase the performance for the peak hours of traffic, the loss function is extended with a novel weighting mechanism. Our comprehensive experiments have shown that the proposed method is significantly more successful in peak hours than ARIMA (Autoregressive Integrated Moving Average) and deep learning-based methods.","PeriodicalId":115446,"journal":{"name":"2022 30th Signal Processing and Communications Applications Conference (SIU)","volume":"53 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traffic Prediction with Peak-Aware Temporal Graph Convolutional Networks\",\"authors\":\"Fatih Acun, Sinan Kalkan, Ebru Aydin Gol\",\"doi\":\"10.1109/SIU55565.2022.9864925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, traffic speed prediction on a large-scale traffic network in Ankara City is performed using deep neural networks. For this purpose, a spatiotemporal deep learning model consisting of Graphical Convolutional Networks and Gated Recurrent Units used as the baseline, and (i) the input space is expanded by temporal embedding to better take into account temporal information, and (ii) to increase the performance for the peak hours of traffic, the loss function is extended with a novel weighting mechanism. Our comprehensive experiments have shown that the proposed method is significantly more successful in peak hours than ARIMA (Autoregressive Integrated Moving Average) and deep learning-based methods.\",\"PeriodicalId\":115446,\"journal\":{\"name\":\"2022 30th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"53 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU55565.2022.9864925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU55565.2022.9864925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,使用深度神经网络对安卡拉市的大型交通网络进行了交通速度预测。为此,使用一个由图形卷积网络和门控循环单元组成的时空深度学习模型作为基线,并且(i)通过时间嵌入扩展输入空间以更好地考虑时间信息,以及(ii)为了提高交通高峰时段的性能,使用一种新的加权机制扩展损失函数。我们的综合实验表明,所提出的方法在高峰时段比ARIMA(自回归综合移动平均)和基于深度学习的方法更成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Traffic Prediction with Peak-Aware Temporal Graph Convolutional Networks
In this study, traffic speed prediction on a large-scale traffic network in Ankara City is performed using deep neural networks. For this purpose, a spatiotemporal deep learning model consisting of Graphical Convolutional Networks and Gated Recurrent Units used as the baseline, and (i) the input space is expanded by temporal embedding to better take into account temporal information, and (ii) to increase the performance for the peak hours of traffic, the loss function is extended with a novel weighting mechanism. Our comprehensive experiments have shown that the proposed method is significantly more successful in peak hours than ARIMA (Autoregressive Integrated Moving Average) and deep learning-based methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traffic Prediction with Peak-Aware Temporal Graph Convolutional Networks Artificial Neural Network Based Fault Diagnostic System for Wind Turbines Remaining Useful Life Prediction on C-MAPSS Dataset via Joint Autoencoder-Regression Architecture A New Fast Walsh Hadamard Transform Spread UW-Optical-OFDM Waveform Indoor Localization with Transfer Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1