全柔顺假指的拓扑优化:设计与测试

Yang Zheng, L. Cao, Zhiqin Qian, Ang Chen, W. Zhang
{"title":"全柔顺假指的拓扑优化:设计与测试","authors":"Yang Zheng, L. Cao, Zhiqin Qian, Ang Chen, W. Zhang","doi":"10.1109/BIOROB.2016.7523766","DOIUrl":null,"url":null,"abstract":"Traditional prosthetic fingers use rigid links and kinematic joints, which lead to the fingers that lack adaptability. This paper presents a new design of fingers which are fully compliant for prosthetic applications. A home-based topology optimization method was used for the structural synthesis and dimensional analysis in order to determine the topology and geometry of the finger. A prototype was manufactured and experimented for its performance. In order to evaluate the performance of the prosthetic finger, the forces and displacements of the input end and output were measured. A spring was attached at the output end to mimic the stiffness of the work-piece in order to evaluate the grasping ability. Finite element analysis was also performed to compare with the experimental results. It was found that the compliant prosthetic finger met the design requirements and overcome some problems present in the traditional prosthetic fingers. The home-made topology optimization method is reliable for the design of prosthetic finger.","PeriodicalId":235222,"journal":{"name":"2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Topology optimization of a fully compliant prosthetic finger: Design and testing\",\"authors\":\"Yang Zheng, L. Cao, Zhiqin Qian, Ang Chen, W. Zhang\",\"doi\":\"10.1109/BIOROB.2016.7523766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional prosthetic fingers use rigid links and kinematic joints, which lead to the fingers that lack adaptability. This paper presents a new design of fingers which are fully compliant for prosthetic applications. A home-based topology optimization method was used for the structural synthesis and dimensional analysis in order to determine the topology and geometry of the finger. A prototype was manufactured and experimented for its performance. In order to evaluate the performance of the prosthetic finger, the forces and displacements of the input end and output were measured. A spring was attached at the output end to mimic the stiffness of the work-piece in order to evaluate the grasping ability. Finite element analysis was also performed to compare with the experimental results. It was found that the compliant prosthetic finger met the design requirements and overcome some problems present in the traditional prosthetic fingers. The home-made topology optimization method is reliable for the design of prosthetic finger.\",\"PeriodicalId\":235222,\"journal\":{\"name\":\"2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOROB.2016.7523766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOROB.2016.7523766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

传统的假肢手指采用刚性连杆和运动关节,导致手指缺乏适应性。本文提出了一种完全适应假肢应用的新型手指设计。为了确定手指的拓扑结构和几何形状,采用基于家庭的拓扑优化方法进行结构综合和量纲分析。制造了一个原型并对其性能进行了试验。为了评估假肢手指的性能,测量了输入端和输出端的力和位移。在输出端附加一个弹簧来模拟工件的刚度,以评估抓取能力。并进行了有限元分析,与实验结果进行了比较。实验结果表明,柔性假肢手指满足了设计要求,克服了传统假肢手指存在的一些问题。自制的拓扑优化方法对假指的设计是可靠的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Topology optimization of a fully compliant prosthetic finger: Design and testing
Traditional prosthetic fingers use rigid links and kinematic joints, which lead to the fingers that lack adaptability. This paper presents a new design of fingers which are fully compliant for prosthetic applications. A home-based topology optimization method was used for the structural synthesis and dimensional analysis in order to determine the topology and geometry of the finger. A prototype was manufactured and experimented for its performance. In order to evaluate the performance of the prosthetic finger, the forces and displacements of the input end and output were measured. A spring was attached at the output end to mimic the stiffness of the work-piece in order to evaluate the grasping ability. Finite element analysis was also performed to compare with the experimental results. It was found that the compliant prosthetic finger met the design requirements and overcome some problems present in the traditional prosthetic fingers. The home-made topology optimization method is reliable for the design of prosthetic finger.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robotic biomarkers in RETT Syndrome: Evaluating stiffness Design of a hydraulic ankle-foot orthosis Role of EMG as a complementary tool for assessment of motor impairment A soft robotic sock device for ankle rehabilitation and prevention of deep vein thrombosis Coupled systems analyses for high-performance robust force control of wearable robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1