大规模线性支持向量有序回归求解器

Yong Shi, Huadong Wang, Lingfeng Niu
{"title":"大规模线性支持向量有序回归求解器","authors":"Yong Shi, Huadong Wang, Lingfeng Niu","doi":"10.1109/ICDMW.2015.257","DOIUrl":null,"url":null,"abstract":"In multiple classification, there is a type of commonproblems where each instance is associated with an ordinal label, which arises in various settings such as text mining, visual recognition and other information retrieval tasks. The support vectorordinal regression (SVOR) is a good model widely used for ordinalregression. In some applications such as document classification, data usually appears in a high dimensional feature space andlinear SVOR becomes a good choice. In this work, we developan efficient solver for training large-scale linear SVOR basedon alternating direction method of multipliers(ADMM). Whencompared empirically on benchmark data sets, the proposedsolver enjoys advantages in terms of both training speed andgeneralization performance over the method based on SMO, which invalidate the effectiveness and efficiency of our algorithm.","PeriodicalId":192888,"journal":{"name":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","volume":"41 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-Scale Linear Support Vector Ordinal Regression Solver\",\"authors\":\"Yong Shi, Huadong Wang, Lingfeng Niu\",\"doi\":\"10.1109/ICDMW.2015.257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In multiple classification, there is a type of commonproblems where each instance is associated with an ordinal label, which arises in various settings such as text mining, visual recognition and other information retrieval tasks. The support vectorordinal regression (SVOR) is a good model widely used for ordinalregression. In some applications such as document classification, data usually appears in a high dimensional feature space andlinear SVOR becomes a good choice. In this work, we developan efficient solver for training large-scale linear SVOR basedon alternating direction method of multipliers(ADMM). Whencompared empirically on benchmark data sets, the proposedsolver enjoys advantages in terms of both training speed andgeneralization performance over the method based on SMO, which invalidate the effectiveness and efficiency of our algorithm.\",\"PeriodicalId\":192888,\"journal\":{\"name\":\"2015 IEEE International Conference on Data Mining Workshop (ICDMW)\",\"volume\":\"41 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Data Mining Workshop (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2015.257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2015.257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在多重分类中,存在一种常见问题,其中每个实例都与一个顺序标签相关联,这种问题出现在文本挖掘、视觉识别和其他信息检索任务等各种设置中。支持向量有序回归(SVOR)是一种广泛应用于有序回归的良好模型。在文档分类等应用中,数据通常出现在高维特征空间中,线性SVOR成为一个很好的选择。在本工作中,我们开发了一种基于乘法器交替方向法(ADMM)的大规模线性SVOR训练的高效求解器。在基准数据集上的经验比较表明,该方法在训练速度和泛化性能上都优于基于SMO的方法,从而验证了算法的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Large-Scale Linear Support Vector Ordinal Regression Solver
In multiple classification, there is a type of commonproblems where each instance is associated with an ordinal label, which arises in various settings such as text mining, visual recognition and other information retrieval tasks. The support vectorordinal regression (SVOR) is a good model widely used for ordinalregression. In some applications such as document classification, data usually appears in a high dimensional feature space andlinear SVOR becomes a good choice. In this work, we developan efficient solver for training large-scale linear SVOR basedon alternating direction method of multipliers(ADMM). Whencompared empirically on benchmark data sets, the proposedsolver enjoys advantages in terms of both training speed andgeneralization performance over the method based on SMO, which invalidate the effectiveness and efficiency of our algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large-Scale Linear Support Vector Ordinal Regression Solver Joint Recovery and Representation Learning for Robust Correlation Estimation Based on Partially Observed Data Accurate Classification of Biological Data Using Ensembles Large-Scale Unusual Time Series Detection Sentiment Polarity Classification Using Structural Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1