差分图像处理中预测方法的比较

S. Chakravarti, T. Jung, S. Ahalt, A. Krishnamurthy
{"title":"差分图像处理中预测方法的比较","authors":"S. Chakravarti, T. Jung, S. Ahalt, A. Krishnamurthy","doi":"10.1109/ICSYSE.1991.161115","DOIUrl":null,"url":null,"abstract":"An overview of ongoing research related to the development of an image data compression algorithm using artificial neural networks (ANNs) is presented. The data compression technique under study uses an ANN to perform vector quantization (VQ). A good predictor is one of the essential components of the image compression technique being explored. The performance of the various predictors are compared including an average predictor, a median predictor, a recurrent artificial neural network (RANN) predictor, and a second-order optimal linear predictor. It is shown that, for some cases, a relatively simple recurrent artificial neural network predictor performs close to the second-order optimal linear predictor and better than the average and the median predictors.<<ETX>>","PeriodicalId":250037,"journal":{"name":"IEEE 1991 International Conference on Systems Engineering","volume":"5 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Comparison of prediction methods for differential image processing applications\",\"authors\":\"S. Chakravarti, T. Jung, S. Ahalt, A. Krishnamurthy\",\"doi\":\"10.1109/ICSYSE.1991.161115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An overview of ongoing research related to the development of an image data compression algorithm using artificial neural networks (ANNs) is presented. The data compression technique under study uses an ANN to perform vector quantization (VQ). A good predictor is one of the essential components of the image compression technique being explored. The performance of the various predictors are compared including an average predictor, a median predictor, a recurrent artificial neural network (RANN) predictor, and a second-order optimal linear predictor. It is shown that, for some cases, a relatively simple recurrent artificial neural network predictor performs close to the second-order optimal linear predictor and better than the average and the median predictors.<<ETX>>\",\"PeriodicalId\":250037,\"journal\":{\"name\":\"IEEE 1991 International Conference on Systems Engineering\",\"volume\":\"5 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE 1991 International Conference on Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSYSE.1991.161115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 1991 International Conference on Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSYSE.1991.161115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

概述了使用人工神经网络(ANNs)开发图像数据压缩算法的正在进行的研究。所研究的数据压缩技术使用人工神经网络进行矢量量化(VQ)。一个好的预测器是正在探索的图像压缩技术的基本组成部分之一。比较了各种预测器的性能,包括平均预测器、中位数预测器、循环人工神经网络(RANN)预测器和二阶最优线性预测器。结果表明,在某些情况下,相对简单的递归人工神经网络预测器的性能接近于二阶最优线性预测器,并且优于平均值和中位数预测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of prediction methods for differential image processing applications
An overview of ongoing research related to the development of an image data compression algorithm using artificial neural networks (ANNs) is presented. The data compression technique under study uses an ANN to perform vector quantization (VQ). A good predictor is one of the essential components of the image compression technique being explored. The performance of the various predictors are compared including an average predictor, a median predictor, a recurrent artificial neural network (RANN) predictor, and a second-order optimal linear predictor. It is shown that, for some cases, a relatively simple recurrent artificial neural network predictor performs close to the second-order optimal linear predictor and better than the average and the median predictors.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling and simulation of a heat exchanger Multidisciplinary modeling and design of a space system Robust stabilization of an aero-elastic system Inductive character learning and classification with genetic algorithms Determining bus arbitration policies and data transfer techniques for multiprocessor systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1