卡塔尔建筑存量惯性及其对能源消耗和二氧化碳排放的影响

Athar Kamal, Sami G. Al‐Ghamdi, M. Koç
{"title":"卡塔尔建筑存量惯性及其对能源消耗和二氧化碳排放的影响","authors":"Athar Kamal, Sami G. Al‐Ghamdi, M. Koç","doi":"10.1115/es2019-3854","DOIUrl":null,"url":null,"abstract":"\n Greenhouse gas emission reduction and the consequent decrease in the environmental impacts of fossil fuel can be achieved by cutting back on energy consumption in the building sector that consumes around 30% of total final energy around the globe. The building sector is a complex component of the modern economy and life and includes diverse types of structures, uses, and energy patterns. Such variability is a result of the way that buildings are designed, built, and used in addition to the variations of their materials, equipment, and users. From the start of the construction phase until their demolition, buildings involve energy consumption. A single building’s energy consumption pattern can be called its energy inertia, that is the way it consumes energy throughout its lifetime. Energy consumption also varies according to the age of the buildings. As a building gets older, its structure and equipment start losing their efficiency and often lead to increasing energy consumption over time. At any given time, the building sector is composed of structures of various ages. Some are under construction, others are recently built, some have lived to be mature and some quite old enough to be demolished. This complexity in the building sector creates a momentum against implementation of policies that reduce energy consumption. In this study, a system dynamic model is developed to perceive the temporal evolution of energy consumption and efficiency measures for the villa-type building stock in Qatar. This model tests energy efficiency policy measures such as renovation rates of 15 and 30 years, for buildings that are considered old, and also examines implementation of technology and building codes for new buildings. Results reveal savings of between 157 GWh and 1,275 GWh of electricity and reduction in CO2 emissions ranging from 77,000 tonnes to 602,000 tonnes.","PeriodicalId":219138,"journal":{"name":"ASME 2019 13th International Conference on Energy Sustainability","volume":"120 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Building Stock Inertia and Impacts on Energy Consumption and CO2 Emissions in Qatar\",\"authors\":\"Athar Kamal, Sami G. Al‐Ghamdi, M. Koç\",\"doi\":\"10.1115/es2019-3854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Greenhouse gas emission reduction and the consequent decrease in the environmental impacts of fossil fuel can be achieved by cutting back on energy consumption in the building sector that consumes around 30% of total final energy around the globe. The building sector is a complex component of the modern economy and life and includes diverse types of structures, uses, and energy patterns. Such variability is a result of the way that buildings are designed, built, and used in addition to the variations of their materials, equipment, and users. From the start of the construction phase until their demolition, buildings involve energy consumption. A single building’s energy consumption pattern can be called its energy inertia, that is the way it consumes energy throughout its lifetime. Energy consumption also varies according to the age of the buildings. As a building gets older, its structure and equipment start losing their efficiency and often lead to increasing energy consumption over time. At any given time, the building sector is composed of structures of various ages. Some are under construction, others are recently built, some have lived to be mature and some quite old enough to be demolished. This complexity in the building sector creates a momentum against implementation of policies that reduce energy consumption. In this study, a system dynamic model is developed to perceive the temporal evolution of energy consumption and efficiency measures for the villa-type building stock in Qatar. This model tests energy efficiency policy measures such as renovation rates of 15 and 30 years, for buildings that are considered old, and also examines implementation of technology and building codes for new buildings. Results reveal savings of between 157 GWh and 1,275 GWh of electricity and reduction in CO2 emissions ranging from 77,000 tonnes to 602,000 tonnes.\",\"PeriodicalId\":219138,\"journal\":{\"name\":\"ASME 2019 13th International Conference on Energy Sustainability\",\"volume\":\"120 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2019 13th International Conference on Energy Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/es2019-3854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 13th International Conference on Energy Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/es2019-3854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

温室气体排放的减少以及随之而来的化石燃料对环境影响的减少可以通过减少建筑行业的能源消耗来实现,而建筑行业的能源消耗约占全球最终能源消耗总量的30%。建筑部门是现代经济和生活的一个复杂组成部分,包括不同类型的结构、用途和能源模式。这种可变性是建筑设计、建造和使用方式的结果,也是其材料、设备和用户变化的结果。从建造阶段开始直到拆除,建筑物都涉及能源消耗。单个建筑的能源消耗模式可以称为其能源惯性,即它在其整个生命周期中消耗能源的方式。能源消耗也根据建筑的年龄而变化。随着建筑物的老化,其结构和设备开始失去效率,并且随着时间的推移往往导致能源消耗增加。在任何时候,建筑部门都是由不同年龄的结构组成的。有些正在建设中,有些是最近才建成的,有些已经成熟了,有些已经相当老了,可以拆除了。建筑行业的这种复杂性造成了一种反对实施减少能源消耗政策的势头。在本研究中,开发了一个系统动态模型来感知卡塔尔别墅型建筑存量的能源消耗和效率措施的时间演变。该模型测试了被认为是旧建筑的能效政策措施,如15年和30年的翻新率,并检查了新建筑的技术和建筑规范的实施情况。结果显示,节省了157吉瓦时至1275吉瓦时的电力,减少了77,000吨至60.2万吨的二氧化碳排放量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Building Stock Inertia and Impacts on Energy Consumption and CO2 Emissions in Qatar
Greenhouse gas emission reduction and the consequent decrease in the environmental impacts of fossil fuel can be achieved by cutting back on energy consumption in the building sector that consumes around 30% of total final energy around the globe. The building sector is a complex component of the modern economy and life and includes diverse types of structures, uses, and energy patterns. Such variability is a result of the way that buildings are designed, built, and used in addition to the variations of their materials, equipment, and users. From the start of the construction phase until their demolition, buildings involve energy consumption. A single building’s energy consumption pattern can be called its energy inertia, that is the way it consumes energy throughout its lifetime. Energy consumption also varies according to the age of the buildings. As a building gets older, its structure and equipment start losing their efficiency and often lead to increasing energy consumption over time. At any given time, the building sector is composed of structures of various ages. Some are under construction, others are recently built, some have lived to be mature and some quite old enough to be demolished. This complexity in the building sector creates a momentum against implementation of policies that reduce energy consumption. In this study, a system dynamic model is developed to perceive the temporal evolution of energy consumption and efficiency measures for the villa-type building stock in Qatar. This model tests energy efficiency policy measures such as renovation rates of 15 and 30 years, for buildings that are considered old, and also examines implementation of technology and building codes for new buildings. Results reveal savings of between 157 GWh and 1,275 GWh of electricity and reduction in CO2 emissions ranging from 77,000 tonnes to 602,000 tonnes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Building Stock Inertia and Impacts on Energy Consumption and CO2 Emissions in Qatar Optimization of Storage Bin Geometry for High Temperature Particle-Based CSP Systems Clean Energy From Municipal Solid Waste (MSW) Comparative Studies on the Effect of Selected Iron-Based Additives on Anaerobic Digestion of Okra Waste Development of a Cascade Elastocaloric Regenerator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1